292 Vectors (Chapter 11)
are parallel vectors of different length.
Two non-zero vectors areparallelif and only if one is a scalar multiple of the other.
Given any non-zero vectoraand non-zero scalark, the vectorkais parallel toa.
² Ifais parallel tob, then there exists
a scalarksuch that a=kb.
² If a=kb for some scalark, then
I ais parallel tob, and
I jaj=jkjjbj.
Example 10 Self Tutor
Findrgiven that a=
μ
¡ 1
r
¶
is parallel to b=
μ
2
¡ 3
¶
Sinceaandbare parallel, a=kb for some scalark.
)
μ
¡ 1
r
¶
=k
μ
2
¡ 3
¶
) ¡1=2k andr=¡ 3 k
) k=¡^12 and hence r=¡3(¡^12 )=^32
UNIT VECTORS
Given a non-zero vectora, its magnitudejajis a scalar quantity.
If we multiplyaby the scalar
1
jaj
, we obtain the parallel vector
1
jaj
a with length 1.
² A unit vector in the direction ofais
1
jaj
a.
² A vector of lengthkin the same direction asais
k
jaj
a.
² A vector of lengthkwhich isparallel toacould be §
k
jaj
a.
E Parallelism
jj
jj
kkis the modulus of ,
whereas is the length
of vector.
a
a
a^2 a Qea
a
b
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_11\292CamAdd_11.cdr Friday, 4 April 2014 2:10:19 PM BRIAN