292 Vectors (Chapter 11)are parallel vectors of different length.Two non-zero vectors areparallelif and only if one is a scalar multiple of the other.Given any non-zero vectoraand non-zero scalark, the vectorkais parallel toa.² Ifais parallel tob, then there exists
a scalarksuch that a=kb.
² If a=kb for some scalark, then
I ais parallel tob, and
I jaj=jkjjbj.Example 10 Self Tutor
Findrgiven that a=μ
¡ 1
r¶
is parallel to b=μ
2
¡ 3¶Sinceaandbare parallel, a=kb for some scalark.)μ
¡ 1
r¶
=kμ
2
¡ 3¶) ¡1=2k andr=¡ 3 k
) k=¡^12 and hence r=¡3(¡^12 )=^32UNIT VECTORS
Given a non-zero vectora, its magnitudejajis a scalar quantity.If we multiplyaby the scalar
1
jaj
, we obtain the parallel vector
1
jaj
a with length 1.² A unit vector in the direction ofais
1
jaja.² A vector of lengthkin the same direction asaisk
jaja.² A vector of lengthkwhich isparallel toacould be §k
jaja.E Parallelism
jj
jjkkis the modulus of ,
whereas is the length
of vector.a
aa^2 a Qeaa
bcyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_11\292CamAdd_11.cdr Friday, 4 April 2014 2:10:19 PM BRIAN