Cambridge Additional Mathematics

(singke) #1
Vectors (Chapter 11) 293

Example 11 Self Tutor


If a=3i¡j, find:
a a unit vector in the direction ofa
b a vector of length 4 units in the direction ofa
c vectors of length 4 units which are parallel toa.

a jaj=

p
32 +(¡1)^2
=

p
9+1
=

p
10 units

) the unit vector is p^110 (3i¡j)
=p^310 i¡p^110 j

b This vector is p^410 (3i¡j)

=p^1210 i¡p^410 j

c The vectors are p^1210 i¡p^410 j and ¡p^1210 i+p^410 j.

EXERCISE 11E


1 Findrgiven that a=

μ
2
¡ 1


and b=

μ
¡ 6
r


are parallel.

2 Findagiven that

μ
3
¡ 1


and

μ
a
2


are parallel.

3 What can be deduced from the following?
a
¡!
AB=3
¡!
CD b
¡!
RS=¡^12
¡!
KL c
¡!
AB=2
¡!
BC

4 If a=

μ
2
4


, write down the vector:

a in the same direction asaand twice its length
b in the opposite direction toaand half its length.

5 Find the unit vector in the direction of:
a i+2j b i¡ 3 j c 2 i¡j
6 Find a vectorvwhich has:
a the same direction as

μ
2
¡ 1


and length 3 units

b the opposite direction to

μ
¡ 1
¡ 4


and length 2 units.

7 Ais(3,2) and point B is 4 units from A in the direction

μ
1
¡ 1


.

a Find

¡!
AB. b Find

¡!
OB using

¡!
OB=

¡!
OA+

¡!
AB.
c Hence deduce the coordinates of B.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\293CamAdd_11.cdr Monday, 6 January 2014 9:56:19 AM BRIAN

Free download pdf