Vectors (Chapter 11) 293
Example 11 Self Tutor
If a=3i¡j, find:
a a unit vector in the direction ofa
b a vector of length 4 units in the direction ofa
c vectors of length 4 units which are parallel toa.
a jaj=
p
32 +(¡1)^2
=
p
9+1
=
p
10 units
) the unit vector is p^110 (3i¡j)
=p^310 i¡p^110 j
b This vector is p^410 (3i¡j)
=p^1210 i¡p^410 j
c The vectors are p^1210 i¡p^410 j and ¡p^1210 i+p^410 j.
EXERCISE 11E
1 Findrgiven that a=
μ
2
¡ 1
¶
and b=
μ
¡ 6
r
¶
are parallel.
2 Findagiven that
μ
3
¡ 1
¶
and
μ
a
2
¶
are parallel.
3 What can be deduced from the following?
a
¡!
AB=3
¡!
CD b
¡!
RS=¡^12
¡!
KL c
¡!
AB=2
¡!
BC
4 If a=
μ
2
4
¶
, write down the vector:
a in the same direction asaand twice its length
b in the opposite direction toaand half its length.
5 Find the unit vector in the direction of:
a i+2j b i¡ 3 j c 2 i¡j
6 Find a vectorvwhich has:
a the same direction as
μ
2
¡ 1
¶
and length 3 units
b the opposite direction to
μ
¡ 1
¡ 4
¶
and length 2 units.
7 Ais(3,2) and point B is 4 units from A in the direction
μ
1
¡ 1
¶
.
a Find
¡!
AB. b Find
¡!
OB using
¡!
OB=
¡!
OA+
¡!
AB.
c Hence deduce the coordinates of B.
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\293CamAdd_11.cdr Monday, 6 January 2014 9:56:19 AM BRIAN