Vectors (Chapter 11) 293Example 11 Self Tutor
If a=3i¡j, find:
a a unit vector in the direction ofa
b a vector of length 4 units in the direction ofa
c vectors of length 4 units which are parallel toa.a jaj=p
32 +(¡1)^2
=p
9+1
=p
10 units) the unit vector is p^110 (3i¡j)
=p^310 i¡p^110 jb This vector is p^410 (3i¡j)=p^1210 i¡p^410 jc The vectors are p^1210 i¡p^410 j and ¡p^1210 i+p^410 j.EXERCISE 11E
1 Findrgiven that a=μ
2
¡ 1¶
and b=μ
¡ 6
r¶
are parallel.2 Findagiven thatμ
3
¡ 1¶
andμ
a
2¶
are parallel.3 What can be deduced from the following?
a
¡!
AB=3
¡!
CD b
¡!
RS=¡^12
¡!
KL c
¡!
AB=2
¡!
BC4 If a=μ
2
4¶
, write down the vector:a in the same direction asaand twice its length
b in the opposite direction toaand half its length.5 Find the unit vector in the direction of:
a i+2j b i¡ 3 j c 2 i¡j
6 Find a vectorvwhich has:
a the same direction asμ
2
¡ 1¶
and length 3 unitsb the opposite direction toμ
¡ 1
¡ 4¶
and length 2 units.7 Ais(3,2) and point B is 4 units from A in the directionμ
1
¡ 1¶
.a Find¡!
AB. b Find¡!
OB using¡!
OB=¡!
OA+¡!
AB.
c Hence deduce the coordinates of B.4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\293CamAdd_11.cdr Monday, 6 January 2014 9:56:19 AM BRIAN