Matrices (Chapter 12) 315
2 FindXin terms ofA,B, andCif:
a X+B=A b B+X=C c 4 B+X=2C
d 2 X=A e 3 X=B f A¡X=B
g^12 X=C h 2(X+A)=B i A¡ 4 X=C
3aSuppose M=
μ
12
36
¶
and^13 X=M. FindX.
b Suppose N=
μ
2 ¡ 1
35
¶
and 4 X=N. FindX.
c Suppose A=
μ
10
¡ 12
¶
, B=
μ
14
¡ 11
¶
, and A¡ 2 X=3B. FindX.
Suppose you go to a shop and purchase 3 cans of soft drink, 4 chocolate bars, and 2 ice creams.
The prices are:
soft drink cans
$ 1 : 30
chocolate bars
$ 0 : 90
ice creams
$ 1 : 20
We can represent this by the quantities matrix A=
¡
342
¢
and the costs matrix B=
0
@
1 : 30
0 : 90
1 : 20
1
A.
We can find the total cost of the items by multiplying the number of each item by its respective cost, and
then adding the results:
3 £$ 1 :30 + 4£$ 0 :90 + 2£$ 1 :20 =$ 9 : 90
We can also determine the total cost by thematrix multiplication:
AB=
¡
342
¢
0
@
1 : 30
0 : 90
1 : 20
1
A
=(3£ 1 :30) + (4£ 0 :90) + (2£ 1 :20)
=9: 90
Notice that we write therow matrixfirst and thecolumn matrixsecond.
In general,
¡
abc
¢
0
@
p
q
r
1
A=ap+bq+cr.
EXERCISE 12C.1
1 Determine:
a
¡
3 ¡ 1
¢
μ
5
4
¶
b
¡
132
¢
0
@
5
1
7
1
A c
¡
6 ¡ 123
¢
0
B
@
1
0
¡ 1
4
1
C
A
C Matrix multiplication
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\315CamAdd_12.cdr Tuesday, 7 January 2014 5:56:43 PM BRIAN