Cambridge Additional Mathematics

(singke) #1
Matrices (Chapter 12) 315

2 FindXin terms ofA,B, andCif:
a X+B=A b B+X=C c 4 B+X=2C
d 2 X=A e 3 X=B f A¡X=B
g^12 X=C h 2(X+A)=B i A¡ 4 X=C

3aSuppose M=

μ
12
36


and^13 X=M. FindX.

b Suppose N=

μ
2 ¡ 1
35


and 4 X=N. FindX.

c Suppose A=

μ
10
¡ 12


, B=

μ
14
¡ 11


, and A¡ 2 X=3B. FindX.

Suppose you go to a shop and purchase 3 cans of soft drink, 4 chocolate bars, and 2 ice creams.

The prices are:
soft drink cans
$ 1 : 30

chocolate bars
$ 0 : 90

ice creams
$ 1 : 20

We can represent this by the quantities matrix A=

¡
342

¢
and the costs matrix B=

0

@

1 : 30
0 : 90
1 : 20

1

A.

We can find the total cost of the items by multiplying the number of each item by its respective cost, and
then adding the results:
3 £$ 1 :30 + 4£$ 0 :90 + 2£$ 1 :20 =$ 9 : 90

We can also determine the total cost by thematrix multiplication:

AB=

¡
342

¢

0

@

1 : 30
0 : 90
1 : 20

1

A

=(3£ 1 :30) + (4£ 0 :90) + (2£ 1 :20)
=9: 90

Notice that we write therow matrixfirst and thecolumn matrixsecond.

In general,

¡
abc

¢

0

@

p
q
r

1

A=ap+bq+cr.

EXERCISE 12C.1


1 Determine:

a

¡
3 ¡ 1

¢
μ
5
4


b

¡
132

¢

0

@

5
1
7

1

A c
¡
6 ¡ 123

¢

0

B
@

1
0
¡ 1
4

1

C
A

C Matrix multiplication


4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\315CamAdd_12.cdr Tuesday, 7 January 2014 5:56:43 PM BRIAN

Free download pdf