Matrices (Chapter 12) 3152 FindXin terms ofA,B, andCif:
a X+B=A b B+X=C c 4 B+X=2C
d 2 X=A e 3 X=B f A¡X=B
g^12 X=C h 2(X+A)=B i A¡ 4 X=C3aSuppose M=μ
12
36¶
and^13 X=M. FindX.b Suppose N=μ
2 ¡ 1
35¶
and 4 X=N. FindX.c Suppose A=μ
10
¡ 12¶
, B=μ
14
¡ 11¶
, and A¡ 2 X=3B. FindX.Suppose you go to a shop and purchase 3 cans of soft drink, 4 chocolate bars, and 2 ice creams.The prices are:
soft drink cans
$ 1 : 30chocolate bars
$ 0 : 90ice creams
$ 1 : 20We can represent this by the quantities matrix A=¡
342¢
and the costs matrix B=0@1 : 30
0 : 90
1 : 201A.We can find the total cost of the items by multiplying the number of each item by its respective cost, and
then adding the results:
3 £$ 1 :30 + 4£$ 0 :90 + 2£$ 1 :20 =$ 9 : 90We can also determine the total cost by thematrix multiplication:AB=¡
342¢0@1 : 30
0 : 90
1 : 201A=(3£ 1 :30) + (4£ 0 :90) + (2£ 1 :20)
=9: 90Notice that we write therow matrixfirst and thecolumn matrixsecond.In general,¡
abc¢0@p
q
r1A=ap+bq+cr.EXERCISE 12C.1
1 Determine:a¡
3 ¡ 1¢
μ
5
4¶
b¡
132¢0@5
1
71A c
¡
6 ¡ 123¢0B
@1
0
¡ 1
41C
AC Matrix multiplication
4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\315CamAdd_12.cdr Tuesday, 7 January 2014 5:56:43 PM BRIAN