Matrices (Chapter 12) 317Pn
r=1means thesum from r=1
to r=n.Lisa’stotal costat Store A is $ 12 : 30 , and at store B is $ 11 : 20.Olu’stotal costat Store A is 1 £$ 2 :65 + 2£$ 1 :55 + 2£$ 2 :35 =$ 10 : 45 ,
and at Store B is 1 £$ 2 :25 + 2£$ 1 :50 + 2£$ 2 :20 =$ 9 : 65.So, using matrices we require thatHaving observed the usefulness of multiplying matrices in the contextual examples above, we now define
matrix multiplication more formally.Theproductof an m£n matrixAwith an n£p matrixB, is the
m£p matrixABin which the element in therth row andcth column
is the sum of the products of the elements in therth row ofAwith the
corresponding elements in thecth column ofB.If C=AB then cij=Pn
r=1airbrj=ai 1 b 1 j+ai 2 b 2 j+::::+ainbnjfor each pairiandjwith 16 i 6 m and 16 j 6 p.
Note that the productABexistsonlyif the number of columns ofA
equals the number of rows ofB.For example:If A=μ
ab
cd¶
and B=μ
pq
rs¶
, then AB=μ
ap+br aq+bs
cp+dr cq+ds¶
.If C=μ
abc
def¶
and D=0@x
y
z1A, then CD=μ
ax+by+cz
dx+ey+fz¶
.To get the matrixAByou multiplyrows by columns. To get the element in the 5 th row and 3 rd column of
AB(if it exists), multiply the 5 th row ofAby the 3 rd column ofB.2 £ 3
3 £ 12 £ 1row 1 £column 1
row 1 £column 2
μ
231
122¶
£0@2 :65 2: 25
1 :55 1: 50
2 :35 2: 201A =μ
12 :30 11: 20
10 :45 9: 65¶row 2 £column 2
row 2 £column 12 £ 3 the same 3 £ 2resultant matrix2 £ 24037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\317CamAdd_12.cdr Wednesday, 8 January 2014 9:48:05 AM BRIAN