Cambridge Additional Mathematics

(singke) #1
320 Matrices (Chapter 12)

b Now let A=

μ
ab
cd


, B=

μ
pq
rs


, and C=

μ
wx
yz


.

Prove that in general, A(B+C)=AB+AC.
c Use the matrices you ‘made up’ inato verify that (AB)C=A(BC).
d Prove that (AB)C=A(BC).

5aIf

μ
ab
cd

¶μ
wx
yz


=

μ
ab
cd


, show that w=z=1 and x=y=0 is a

solution for any values ofa,b,c, andd.
b For any real numbera, we know that a£1=1£a=a.
Is there a matrixIsuch that AI=IA=A for all 2 £ 2 matricesA?

6 Suppose A^2 =AA=A£A and that A^3 =AAA.

a FindA^2 if A=

μ
21
3 ¡ 2


. b FindA^3 if A=


μ
5 ¡ 1
24


.

c If A=

0
@

12
34
56

1
A try to findA^2.

d Under what conditions can we square a matrix?

7 Show that if I=

μ
10
01


then I^2 =I and I^3 =I.

In theDiscoveryyou should have found that:

Note that in general, A(kB)=k(AB) 6 =kBA. We can change the order in which we multiply by a scalar,
but we cannot reverse the order in which we multiply matrices.

I=

μ
10
01


is called the
identity matrix.

Ordinary algebra
² Ifaandbare real numbers then
so isab. fclosureg
² ab=ba for alla,b fcommutativeg
² a0=0a=0 for alla

² ab=0, a=0or b=0

² a(b+c)=ab+ac
fdistributive lawg
² a£1=1£a=a fidentity lawg

² an exists for all a> 0 and n 2 R.

Matrix algebra
² IfAandBare matrices that can be multiplied
thenABis also a matrix. fclosureg
² In general AB 6 =BA. fnon-commutativeg
² IfOis a zero matrix then
AO=OA=O for allA.
² ABmay beOwithout requiring
A=O or B=O.
² A(B+C)=AB+AC fdistributive lawg

² IfIis theidentity matrix

μ
10
01


then

AI=IA=A for all 2 £ 2 matricesA.
fidentity lawg
² An exists providedAis square and n 2 Z+.

fNull Factor lawg

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\320CamAdd_12.cdr Wednesday, 8 January 2014 11:28:59 AM BRIAN

Free download pdf