320 Matrices (Chapter 12)
b Now let A=
μ
ab
cd
¶
, B=
μ
pq
rs
¶
, and C=
μ
wx
yz
¶
.
Prove that in general, A(B+C)=AB+AC.
c Use the matrices you ‘made up’ inato verify that (AB)C=A(BC).
d Prove that (AB)C=A(BC).
5aIf
μ
ab
cd
¶μ
wx
yz
¶
=
μ
ab
cd
¶
, show that w=z=1 and x=y=0 is a
solution for any values ofa,b,c, andd.
b For any real numbera, we know that a£1=1£a=a.
Is there a matrixIsuch that AI=IA=A for all 2 £ 2 matricesA?
6 Suppose A^2 =AA=A£A and that A^3 =AAA.
a FindA^2 if A=
μ
21
3 ¡ 2
¶
. b FindA^3 if A=
μ
5 ¡ 1
24
¶
.
c If A=
0
@
12
34
56
1
A try to findA^2.
d Under what conditions can we square a matrix?
7 Show that if I=
μ
10
01
¶
then I^2 =I and I^3 =I.
In theDiscoveryyou should have found that:
Note that in general, A(kB)=k(AB) 6 =kBA. We can change the order in which we multiply by a scalar,
but we cannot reverse the order in which we multiply matrices.
I=
μ
10
01
¶
is called the
identity matrix.
Ordinary algebra
² Ifaandbare real numbers then
so isab. fclosureg
² ab=ba for alla,b fcommutativeg
² a0=0a=0 for alla
² ab=0, a=0or b=0
² a(b+c)=ab+ac
fdistributive lawg
² a£1=1£a=a fidentity lawg
² an exists for all a> 0 and n 2 R.
Matrix algebra
² IfAandBare matrices that can be multiplied
thenABis also a matrix. fclosureg
² In general AB 6 =BA. fnon-commutativeg
² IfOis a zero matrix then
AO=OA=O for allA.
² ABmay beOwithout requiring
A=O or B=O.
² A(B+C)=AB+AC fdistributive lawg
² IfIis theidentity matrix
μ
10
01
¶
then
AI=IA=A for all 2 £ 2 matricesA.
fidentity lawg
² An exists providedAis square and n 2 Z+.
fNull Factor lawg
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\320CamAdd_12.cdr Wednesday, 8 January 2014 11:28:59 AM BRIAN