Cambridge Additional Mathematics

(singke) #1
Matrices (Chapter 12) 323

The real numbers 5 and^15 are calledmultiplicative inversesbecause when they are multiplied together, the
result is the multiplicative identity 1 : 5 £^15 =^15 £5=1

For the matrices

μ
25
13


and

μ
3 ¡ 5
¡ 12


, we notice that

μ
25
13

¶μ
3 ¡ 5
¡ 12


=

μ
10
01


=I

and

μ
3 ¡ 5
¡ 12

¶μ
25
13


=

μ
10
01


=I.

We say that

μ
25
13


and

μ
3 ¡ 5
¡ 12


aremultiplicative inversesof each other.

Themultiplicative inverseofA, denotedA¡^1 , satisfies AA¡^1 =A¡^1 A=I.

To find the multiplicative inverse of a matrixA, we need a matrix which, when multiplied byA, gives the
identity matrixI.

We will now determine how to find the inverse of a matrixA.

Suppose A=

μ
ab
cd


and A¡^1 =

μ
wx
yz


) AA¡^1 =

μ
ab
cd

¶μ
wx
yz


=I

)

μ
aw+by ax+bz
cw+dy cx+dz


=

μ
10
01


)

½
aw+by=1 .... (1)
cw+dy=0 .... (2)

and

½
ax+bz=0 .... (3)
cx+dz=1 .... (4)

Solving (1) and (2) simultaneously forwandygives: w=
d
ad¡bc
and y=
¡c
ad¡bc
.

Solving (3) and (4) simultaneously forxandzgives: x=
¡b
ad¡bc
and z=
a
ad¡bc
.

So, if A=

μ
ab
cd


where ad¡bc 6 =0, then A¡^1 =
1
ad¡bc

μ
d ¡b
¡ca


.

In this case A¡^1 A=
1
ad¡bc

μ
d ¡b
¡ca

¶μ
ab
cd


=
1
ad¡bc

μ
ad¡bc bd¡bd
ac¡ac ¡bc+ad


=

μ
10
01


=I also,
so A¡^1 A=AA¡^1 =I

D The inverse of a × matrix


4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\323CamAdd_12.cdr Tuesday, 7 January 2014 6:02:41 PM BRIAN

Free download pdf