Matrices (Chapter 12) 323The real numbers 5 and^15 are calledmultiplicative inversesbecause when they are multiplied together, the
result is the multiplicative identity 1 : 5 £^15 =^15 £5=1For the matricesμ
25
13¶
andμ
3 ¡ 5
¡ 12¶
, we notice thatμ
25
13¶μ
3 ¡ 5
¡ 12¶
=μ
10
01¶
=Iandμ
3 ¡ 5
¡ 12¶μ
25
13¶
=μ
10
01¶
=I.We say thatμ
25
13¶
andμ
3 ¡ 5
¡ 12¶
aremultiplicative inversesof each other.Themultiplicative inverseofA, denotedA¡^1 , satisfies AA¡^1 =A¡^1 A=I.To find the multiplicative inverse of a matrixA, we need a matrix which, when multiplied byA, gives the
identity matrixI.We will now determine how to find the inverse of a matrixA.Suppose A=μ
ab
cd¶
and A¡^1 =μ
wx
yz¶) AA¡^1 =μ
ab
cd¶μ
wx
yz¶
=I)μ
aw+by ax+bz
cw+dy cx+dz¶
=μ
10
01¶)½
aw+by=1 .... (1)
cw+dy=0 .... (2)and½
ax+bz=0 .... (3)
cx+dz=1 .... (4)Solving (1) and (2) simultaneously forwandygives: w=
d
ad¡bc
and y=
¡c
ad¡bc
.Solving (3) and (4) simultaneously forxandzgives: x=
¡b
ad¡bc
and z=
a
ad¡bc
.So, if A=μ
ab
cd¶
where ad¡bc 6 =0, then A¡^1 =
1
ad¡bcμ
d ¡b
¡ca¶
.In this case A¡^1 A=
1
ad¡bcμ
d ¡b
¡ca¶μ
ab
cd¶=
1
ad¡bcμ
ad¡bc bd¡bd
ac¡ac ¡bc+ad¶=μ
10
01¶=I also,
so A¡^1 A=AA¡^1 =ID The inverse of a × matrix
4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\323CamAdd_12.cdr Tuesday, 7 January 2014 6:02:41 PM BRIAN