326 Matrices (Chapter 12)FURTHER MATRIX ALGEBRA
In this section we consider matrix algebra with inverse matrices.
Be careful that you use multiplication correctly. In particular,
remember that:
² We can only perform matrix multiplication if the orders of
the matrices allow it.
² If wepremultiply on one side then we mustpremultiply
on the other. This is important because, in general,
AB 6 =BA. The same applies if wepostmultiply.Discovery 2 Properties of inverse matrices
#endboxedheadingIn this Discovery, we consider some properties of invertible 2 £ 2 matrices.What to do:1 A matrixAisself-inversewhen A=A¡^1.For example, if A=μ
0 ¡ 1
¡ 10¶
then A¡^1 =¡^11μ
01
10¶
=μ
0 ¡ 1
¡ 10¶
=A.a Show that if A=A¡^1 , then A^2 =I.b Show that there are exactly 4 self-inverse matrices of the formμ
ab
ba¶
.2aGiven A=μ
12
¡ 10¶
, find A¡^1 and (A¡^1 )¡^1.b IfAis any invertible matrix, simplify (A¡^1 )¡^1 (A¡^1 ) and (A¡^1 )(A¡^1 )¡^1 by replacing
A¡^1 by B.
c What can be deduced fromb?3 Supposekis a non-zero number andAis an invertible matrix.a Simplify (kA)(^1
kA¡^1 ) and (^1
kA¡^1 )(kA).b What can you conclude from your results?4aIf A=μ
11
2 ¡ 1¶
and B=μ
01
2 ¡ 3¶
, find in simplest form:i A¡^1 ii B¡^1 iii (AB)¡^1
iv (BA)¡^1 v A¡^1 B¡^1 vi B¡^1 A¡^1
b Choose any two invertible matrices and repeata.
c What do the results ofaandbsuggest?
d Simplify (AB)(B¡^1 A¡^1 ) and (B¡^1 A¡^1 )(AB) given that A¡^1 and B¡^1 exist.
What can you conclude from your results?PremultiplyPostmultiplymeans multiply
on the left of each side.
means multiply
on the right of each side.cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\326CamAdd_12.cdr Wednesday, 8 January 2014 11:30:02 AM BRIAN