Cambridge Additional Mathematics

(singke) #1
Premultiplymeans
multiply on the left
of each side.

Matrices (Chapter 12) 327

From theDiscoveryyou should have found that ifAandBare invertible, then:

² (A¡^1 )¡^1 =A ² (kA)¡^1 =
1
k
A¡^1 ² (AB)¡^1 =B¡^1 A¡^1

Example 12 Self Tutor


If A^2 =2A+3I, find A¡^1 in the linear form rA+sI whererandsare scalars.

A^2 =2A+3I
) A¡^1 A^2 =A¡^1 (2A+3I) fpremultiplying both sides byA¡^1 g
) A¡^1 AA=2A¡^1 A+3A¡^1 I
) IA=2I+3A¡^1
) A¡ 2 I=3A¡^1
) A¡^1 =^13 (A¡ 2 I)
) A¡^1 =^13 A¡^23 I

EXERCISE 12D.2


1 Suppose A=

μ
21
01


, B=

μ
12
¡ 10


, C=

μ
03
12


, and AXB=C. FindX.

2 Suppose X,Y, andZ are 2 £ 1 matrices, andAandBare invertible 2 £ 2 matrices.
If X=AY and Y=BZ, write:
a Xin terms ofZ b Zin terms ofX.

3 If A=

μ
32
¡ 2 ¡ 1


, write A^2 in the linear form pA+qI wherepandqare scalars.

Hence write A¡^1 in the form rA+sI whererandsare scalars.
4 Write A¡^1 in linear form given that:
a A^2 =4A¡I b 5 A=I¡A^2 c 2 I=3A^2 ¡ 4 A
5 It is known that AB=A and BA=B where the matricesAandBare not necessarily invertible.
Prove that A^2 =A.
Hint: From AB=A, you cannot deduce that B=I.

6 Under what condition is it true that “if AB=AC then B=C”?
7 If X=P¡^1 AP and A^3 =I, prove that X^3 =I.

8 If aA^2 +bA+cI=O and X=P¡^1 AP, prove that aX^2 +bX+cI=O.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\327CamAdd_12.cdr Tuesday, 7 January 2014 6:09:32 PM BRIAN

Free download pdf