Cambridge Additional Mathematics

(singke) #1
332 Matrices (Chapter 12)

8 For A=

μ
32
¡ 11


, find:

a detA b det (¡ 2 A) c det (A^2 )
9 Solve using an inverse matrix:

a

½
x+y=5
x¡ 2 y=4

b

½
3 x+2y=3
5 x+3y=4

10 If M=

μ
k 2
2 k

¶μ
k¡ 1 ¡ 2
¡ 3 k


has an inverseM¡^1 , what values cankhave?

11 For what values ofkdoes the system

½
kx+3y=¡ 6
x+(k+2)y=2

have a unique solution?

State the solution in this case.
12 Write 5 A^2 ¡ 6 A=3I in the form AB=I. Hence writeA¡^1 in terms ofAandI.
13 Prove that for any 2 £ 2 matrixA, A^2 can be written in the linear form aA+bI.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\332CamAdd_12.cdr Wednesday, 8 January 2014 9:45:39 AM BRIAN

Free download pdf