352 Introduction to differential calculus (Chapter 13)
3 Copy and complete the following table, finding f^0 (x) by direct differentiation.
f(x) f^0 (x) u(x) v(x) u^0 (x) v^0 (x) u^0 (x)v(x)+u(x)v^0 (x)
x^2 x x
x
3
(^2) x px
x(x+1) x x+1
(x¡1)(2¡x^2 ) x¡ 1 2 ¡x^2
4 Copy and complete: “If f(x)=u(x)v(x) then f^0 (x)=::::::”
THE PRODUCT RULE
If f(x)=u(x)v(x) then f^0 (x)=u^0 (x)v(x)+u(x)v^0 (x).
Alternatively, if y=uv whereuandvare functions ofx, then
dy
dx
=
du
dx
v+u
dv
dx
.
Example 11 Self Tutor
Find
dy
dx
if:
a y=
p
x(2x+1)^3 b y=x^2 (x^2 ¡ 2 x)^4
a y=
p
x(2x+1)^3 is the product of u=x
1
(^2) and v=(2x+1)^3
) u^0 =^12 x
¡^12
and v^0 = 3(2x+1)^2 £ 2 fchain ruleg
= 6(2x+1)^2
Now
dy
dx
=u^0 v+uv^0 fproduct ruleg
=^12 x
¡^12
(2x+1)^3 +x
1
(^2) £6(2x+1)^2
=^12 x
¡^12
(2x+1)^3 +6x
1
(^2) (2x+1)^2
b y=x^2 (x^2 ¡ 2 x)^4 is the product of u=x^2 and v=(x^2 ¡ 2 x)^4
) u^0 =2x and v^0 =4(x^2 ¡ 2 x)^3 (2x¡2) fchain ruleg
Now
dy
dx
=u^0 v+uv^0 fproduct ruleg
=2x(x^2 ¡ 2 x)^4 +x^2 £4(x^2 ¡ 2 x)^3 (2x¡2)
=2x(x^2 ¡ 2 x)^4 +4x^2 (x^2 ¡ 2 x)^3 (2x¡2)
EXERCISE 13G
1 Use the product rule to differentiate:
a f(x)=x(x¡1) b f(x)=2x(x+1) c f(x)=x^2
p
x+1
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_13\352CamAdd_13.cdr Tuesday, 7 January 2014 9:53:47 AM BRIAN