Cambridge Additional Mathematics

(singke) #1
Introduction to differential calculus (Chapter 13) 353

2 Find
dy
dx
using the product rule:

a y=x^2 (2x¡1) b y=4x(2x+1)^3 c y=x^2

p
3 ¡x
d y=

p
x(x¡3)^2 e y=5x^2 (3x^2 ¡1)^2 f y=

p
x(x¡x^2 )^3
3 Find the gradient of the tangent to:
a y=x^4 (1¡ 2 x)^2 at x=¡ 1 b y=

p
x(x^2 ¡x+1)^2 at x=4
c y=x

p
1 ¡ 2 x at x=¡ 4 d y=x^3

p
5 ¡x^2 at x=1.

4 Consider y=

p
x(3¡x)^2.

a Show that
dy
dx
=
(3¡x)(3¡ 5 x)
2
p
x
b Find thex-coordinates of all points on y=

p
x(3¡x)^2 where the tangent is horizontal.

c For what values ofxis
dy
dx
undefined?

5 Suppose y=¡ 2 x^2 (x+4). For what values ofxdoes
dy
dx
=10?

Expressions like
x^2 +1
2 x¡ 5

,

p
x
1 ¡ 3 x

, and
x^3
(x¡x^2 )^4

are calledquotientsbecause they represent the division

of one function by another.

Quotient functions have the form Q(x)=
u(x)
v(x)
Notice that u(x)=Q(x)v(x)
) u^0 (x)=Q^0 (x)v(x)+Q(x)v^0 (x) fproduct ruleg
) u^0 (x)¡Q(x)v^0 (x)=Q^0 (x)v(x)

) Q^0 (x)v(x)=u^0 (x)¡
u(x)
v(x)
v^0 (x)

) Q^0 (x)v(x)=
u^0 (x)v(x)¡u(x)v^0 (x)
v(x)

) Q^0 (x)=

u^0 (x)v(x)¡u(x)v^0 (x)
[v(x)]^2
when this exists.

THE QUOTIENT RULE


H The quotient rule


If Q(x)=

u(x)
v(x)

then Q^0 (x)=

u^0 (x)v(x)¡u(x)v^0 (x)
[v(x)]^2

Alternatively, if y=

u
v

whereuandvare functions ofx, then

dy
dx

=

u^0 v¡uv^0
v^2

.

.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_13\353CamAdd_13.cdr Monday, 20 January 2014 3:51:15 PM BRIAN

Free download pdf