Introduction to differential calculus (Chapter 13) 3532 Find
dy
dx
using the product rule:a y=x^2 (2x¡1) b y=4x(2x+1)^3 c y=x^2p
3 ¡x
d y=p
x(x¡3)^2 e y=5x^2 (3x^2 ¡1)^2 f y=p
x(x¡x^2 )^3
3 Find the gradient of the tangent to:
a y=x^4 (1¡ 2 x)^2 at x=¡ 1 b y=p
x(x^2 ¡x+1)^2 at x=4
c y=xp
1 ¡ 2 x at x=¡ 4 d y=x^3p
5 ¡x^2 at x=1.4 Consider y=p
x(3¡x)^2.a Show that
dy
dx
=
(3¡x)(3¡ 5 x)
2
p
x
b Find thex-coordinates of all points on y=p
x(3¡x)^2 where the tangent is horizontal.c For what values ofxis
dy
dx
undefined?5 Suppose y=¡ 2 x^2 (x+4). For what values ofxdoes
dy
dx
=10?Expressions like
x^2 +1
2 x¡ 5,p
x
1 ¡ 3 x, and
x^3
(x¡x^2 )^4are calledquotientsbecause they represent the divisionof one function by another.Quotient functions have the form Q(x)=
u(x)
v(x)
Notice that u(x)=Q(x)v(x)
) u^0 (x)=Q^0 (x)v(x)+Q(x)v^0 (x) fproduct ruleg
) u^0 (x)¡Q(x)v^0 (x)=Q^0 (x)v(x)) Q^0 (x)v(x)=u^0 (x)¡
u(x)
v(x)
v^0 (x)) Q^0 (x)v(x)=
u^0 (x)v(x)¡u(x)v^0 (x)
v(x)) Q^0 (x)=u^0 (x)v(x)¡u(x)v^0 (x)
[v(x)]^2
when this exists.THE QUOTIENT RULE
H The quotient rule
If Q(x)=u(x)
v(x)then Q^0 (x)=u^0 (x)v(x)¡u(x)v^0 (x)
[v(x)]^2Alternatively, if y=u
vwhereuandvare functions ofx, thendy
dx=u^0 v¡uv^0
v^2..4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_13\353CamAdd_13.cdr Monday, 20 January 2014 3:51:15 PM BRIAN
