Cambridge Additional Mathematics

(singke) #1
354 Introduction to differential calculus (Chapter 13)

Example 12 Self Tutor


Use the quotient rule to find
dy
dx

if:

a y=
1+3x
x^2 +1
b y=

p
x
(1¡ 2 x)^2

a y=
1+3x
x^2 +1
is a quotient with u=1+3x and v=x^2 +1
) u^0 =3 and v^0 =2x

Now
dy
dx
=
u^0 v¡uv^0
v^2
fquotient ruleg

=
3(x^2 +1)¡(1 + 3x)2x
(x^2 +1)^2

=
3 x^2 +3¡ 2 x¡ 6 x^2
(x^2 +1)^2

=^3 ¡^2 x¡^3 x

2
(x^2 +1)^2

b y=

p
x
(1¡ 2 x)^2

is a quotient with u=x

1

(^2) and v=(1¡ 2 x)^2
) u^0 =^12 x
¡^12
and v^0 = 2(1¡ 2 x)^1 £(¡2) fchain ruleg
=¡4(1¡ 2 x)
Now
dy
dx


u^0 v¡uv^0
v^2
fquotient ruleg


1
2 x
¡^12
(1¡ 2 x)^2 ¡x
1
(^2) £(¡4(1¡ 2 x))
(1¡ 2 x)^4


1
2 x
¡^12
(1¡ 2 x)^2 +4x
1
(^2) (1¡ 2 x)
(1¡ 2 x)^4


(1¡ 2 x)
h
1 ¡ 2 x
2 px+4
p
x
³
2
p
x
2 px
́i
(1¡ 2 x)^4
flook for common factorsg


1 ¡ 2 x+8x
2
p
x(1¡ 2 x)^3


6 x+1
2
p
x(1¡ 2 x)^3
3
Simplification of is often unnecessary,
especially if you simply want the gradient
of a tangent at a given point. In such cases,
substitute a value for without simplifying
the derivative function first.
^^
x
dy
dx
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_13\354CamAdd_13.cdr Tuesday, 7 January 2014 9:54:04 AM BRIAN

Free download pdf