Cambridge Additional Mathematics

(singke) #1
Introduction to differential calculus (Chapter 13) 359

Discovery 8 The derivative of lnx


If y=lnx, what is the gradient function?
What to do:
1 Click on the icon to see the graph of y=lnx. Observe the gradient function being
drawn as the point moves from left to right along the graph.
2 Predict a formula for the gradient function of y=lnx.
3 Find the gradient of the tangent to y=lnx for x=0: 25 , 0 : 5 , 1 , 2 , 3 , 4 , and 5.
Do your results confirm your prediction in 2?

From theDiscoveryyou should have observed: If y=lnx then
dy
dx

=
1
x

The proof of this result is beyond the scope of this course.

THE DERIVATIVE OF lnf(x)


Suppose y=lnf(x)
) y=lnu where u=f(x).

Now
dy
dx
=
dy
du

du
dx
fchain ruleg

)
dy
dx
=
1
u

du
dx

=
f^0 (x)
f(x)

Function Derivative

lnx
1
x

lnf(x)
f^0 (x)
f(x)

Example 15 Self Tutor


Find the gradient function of:
a y=ln(kx), ka constant b y=ln(1¡ 3 x) c y=x^3 lnx

a y=ln(kx)

)
dy
dx

=
k
kx
=
1
x

b y=ln(1¡ 3 x)

)
dy
dx

=
¡ 3
1 ¡ 3 x
=
3
3 x¡ 1

c y=x^3 lnx

)
dy
dx

=3x^2 lnx+x^3

³ 1
x

́

fproduct ruleg
=3x^2 lnx+x^2
=x^2 (3 lnx+1)

J Derivatives of logarithmic functions

CALCULUS
DEMO

ln( ) = ln + ln
=ln +
ln( ) ln

kx k x
x
kx x

constant
so and
both have derivative

__

Qv_.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_13\359CamAdd_13.cdr Tuesday, 7 January 2014 9:56:42 AM BRIAN

Free download pdf