Introduction to differential calculus (Chapter 13) 359Discovery 8 The derivative of lnx
If y=lnx, what is the gradient function?
What to do:
1 Click on the icon to see the graph of y=lnx. Observe the gradient function being
drawn as the point moves from left to right along the graph.
2 Predict a formula for the gradient function of y=lnx.
3 Find the gradient of the tangent to y=lnx for x=0: 25 , 0 : 5 , 1 , 2 , 3 , 4 , and 5.
Do your results confirm your prediction in 2?From theDiscoveryyou should have observed: If y=lnx then
dy
dx=
1
xThe proof of this result is beyond the scope of this course.THE DERIVATIVE OF lnf(x)
Suppose y=lnf(x)
) y=lnu where u=f(x).Now
dy
dx
=
dy
dudu
dx
fchain ruleg)
dy
dx
=
1
udu
dx=
f^0 (x)
f(x)Function Derivativelnx
1
xlnf(x)
f^0 (x)
f(x)Example 15 Self Tutor
Find the gradient function of:
a y=ln(kx), ka constant b y=ln(1¡ 3 x) c y=x^3 lnxa y=ln(kx))
dy
dx=
k
kx
=
1
xb y=ln(1¡ 3 x))
dy
dx=
¡ 3
1 ¡ 3 x
=
3
3 x¡ 1c y=x^3 lnx)
dy
dx=3x^2 lnx+x^3³ 1
x́fproduct ruleg
=3x^2 lnx+x^2
=x^2 (3 lnx+1)J Derivatives of logarithmic functions
CALCULUS
DEMOln( ) = ln + ln
=ln +
ln( ) lnkx k x
x
kx xconstant
so and
both have derivative__Qv_.4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_13\359CamAdd_13.cdr Tuesday, 7 January 2014 9:56:42 AM BRIAN