360 Introduction to differential calculus (Chapter 13)
The laws of logarithms can help us to differentiate some logarithmic functions more easily.
For a> 0 , b> 0 , n 2 R: ln(ab)=lna+lnb
ln
³a
b
́
=lna¡lnb
ln(an)=nlna
Example 16 Self Tutor
Differentiate with respect tox:
a y=ln(xe¡x) b y=ln
·
x^2
(x+ 2)(x¡3)
̧
a y=ln(xe¡x)
=lnx+lne¡x fln(ab)=lna+lnbg
=lnx¡x flnea=ag
)
dy
dx
=
1
x
¡ 1
b y=ln
·
x^2
(x+ 2)(x¡3)
̧
=lnx^2 ¡ln[(x+ 2)(x¡3)] fln
³
a
b
́
=lna¡lnbg
=2lnx¡[ln(x+ 2) + ln(x¡3)]
=2lnx¡ln(x+2)¡ln(x¡3)
)
dy
dx
=
2
x
¡
1
x+2
¡
1
x¡ 3
EXERCISE 13J
1 Find the gradient function of:
a y=ln(7x) b y=ln(2x+1) c y=ln(x¡x^2 )
d y=3¡2lnx e y=x^2 lnx f y=
lnx
2 x
g y=exlnx h y=(lnx)^2 i y=
p
lnx
j y=e¡xlnx k y=
p
xln(2x) l y=
2
p
x
lnx
m y=3¡4ln(1¡x) n y=xln(x^2 +1)
2 Find
dy
dx
for:
a y=xln 5 b y=ln(x^3 ) c y=ln(x^4 +x)
d y= ln(10¡ 5 x) e y= [ln(2x+1)]^3 f y=
ln(4x)
x
g y=ln
³
1
x
́
h y=ln(lnx) i y=
1
lnx
A derivative function
will only be valid on
the domain of
the original function.
at most
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_13\360CamAdd_13.cdr Tuesday, 7 January 2014 9:54:49 AM BRIAN