Cambridge Additional Mathematics

(singke) #1
360 Introduction to differential calculus (Chapter 13)

The laws of logarithms can help us to differentiate some logarithmic functions more easily.

For a> 0 , b> 0 , n 2 R: ln(ab)=lna+lnb

ln

³a
b

́
=lna¡lnb

ln(an)=nlna

Example 16 Self Tutor


Differentiate with respect tox:

a y=ln(xe¡x) b y=ln

·
x^2
(x+ 2)(x¡3)

̧

a y=ln(xe¡x)
=lnx+lne¡x fln(ab)=lna+lnbg
=lnx¡x flnea=ag

)
dy
dx
=
1
x
¡ 1

b y=ln

·
x^2
(x+ 2)(x¡3)

̧

=lnx^2 ¡ln[(x+ 2)(x¡3)] fln

³
a
b

́
=lna¡lnbg

=2lnx¡[ln(x+ 2) + ln(x¡3)]
=2lnx¡ln(x+2)¡ln(x¡3)

)
dy
dx
=
2
x
¡
1
x+2
¡
1
x¡ 3

EXERCISE 13J


1 Find the gradient function of:
a y=ln(7x) b y=ln(2x+1) c y=ln(x¡x^2 )

d y=3¡2lnx e y=x^2 lnx f y=
lnx
2 x
g y=exlnx h y=(lnx)^2 i y=

p
lnx

j y=e¡xlnx k y=

p
xln(2x) l y=
2
p
x
lnx
m y=3¡4ln(1¡x) n y=xln(x^2 +1)

2 Find
dy
dx
for:

a y=xln 5 b y=ln(x^3 ) c y=ln(x^4 +x)

d y= ln(10¡ 5 x) e y= [ln(2x+1)]^3 f y=
ln(4x)
x

g y=ln

³
1
x

́
h y=ln(lnx) i y=
1
lnx

A derivative function
will only be valid on
the domain of
the original function.

at most

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_13\360CamAdd_13.cdr Tuesday, 7 January 2014 9:54:49 AM BRIAN

Free download pdf