366 Introduction to differential calculus (Chapter 13)
Review set 13B
1 Evaluate the limits:
a lim
h! 0
h^3 ¡ 3 h
h
b lim
x! 1
3 x^2 ¡ 3 x
x¡ 1
c lim
x! 2
x^2 ¡ 3 x+2
2 ¡x
2 Given f(x)=5x¡x^2 , find f^0 (1) from first principles.
3aGiven y=2x^2 ¡ 1 , find
dy
dx
from first principles.
b Hence state the gradient of the tangent to y=2x^2 ¡ 1 at the point where x=4.
c For what value ofxis the gradient of the tangent to y=2x^2 ¡ 1 equal to¡ 12?
4 Differentiate with respect tox: a y=x^3
p
1 ¡x^2 b y=x
(^2) ¡ 3 x
p
x+1
5 Find
d^2 y
dx^2
for: a y=3x^4 ¡
2
x
b y=x^3 ¡x+
1
p
x
6 Find all points on the curve y=xex where the gradient of the tangent is 2 e.
7 Differentiate with respect tox: a f(x) = ln(ex+3) b f(x)=ln
·
(x+2)^3
x
̧
8 Suppose y=
³
x¡
1
x
́ 4
. Find
dy
dx
when x=1.
9 Find
dy
dx
if: a y=ln(x^3 ¡ 3 x) b y=
ex
x^2
10 Findxif f^00 (x)=0and f(x)=2x^4 ¡ 4 x^3 ¡ 9 x^2 +4x+7.
11 If f(x)=x¡cosx, find
a f(¼) b f^0 (¼ 2 ) c f^00 (^34 ¼)
12 a Find f^0 (x) and f^00 (x) for f(x)=
p
xcos(4x).
b Hence find f^0 ( 16 ¼) and f^00 (¼ 8 ).
13 Suppose y= 3 sin 2x+ 2 cos 2x. Show that 4 y+d
(^2) y
dx^2
=0.
14 Consider f(x)=
6 x
3+x^2
. Find the value(s) ofxwhen:
a f(x)=¡^12 b f^0 (x)=0 c f^00 (x)=0
15 The functionfis defined by f:x 7 !¡10 sin 2xcos 2x, 06 x 6 ¼.
a Write down an expression for f(x) in the form ksin 4x.
b Solve f^0 (x)=0, giving exact answers.
16 Given thataandbare constants, differentiate y= 3 sinbx¡acos 2x with respect tox.
Findaandbif y+
d^2 y
dx^2
= 6 cos 2x.
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_13\366CamAdd_13.cdr Tuesday, 7 January 2014 12:07:46 PM BRIAN