Applications of differential calculus (Chapter 14) 371
Example 3 Self Tutor
Find the equations of any horizontal tangents to y=x^3 ¡ 12 x+2.
Since y=x^3 ¡ 12 x+2,
dy
dx
=3x^2 ¡ 12
Horizontal tangents have gradient 0 ,so 3 x^2 ¡12 = 0
) 3(x^2 ¡4) = 0
) 3(x+ 2)(x¡2) = 0
) x=¡ 2 or 2
When x=2, y=8¡24 + 2 =¡ 14
When x=¡ 2 , y=¡8 + 24 + 2 = 18
) the points of contact are (2,¡14) and (¡ 2 ,18)
) the tangents are y=¡ 14 and y=18.
3 Find the equations of any horizontal tangents to y=2x^3 +3x^2 ¡ 12 x+1.
4 Find the points of contact where horizontal tangents meet the curve y=2
p
x+
1
p
x
.
5 Findkif the tangent to y=2x^3 +kx^2 ¡ 3 at the point where x=2has gradient 4.
6 Find the equation of another tangent to y=1¡ 3 x+12x^2 ¡ 8 x^3 which is parallel to the tangent
at (1,2).
7 Consider the curve y=x^2 +ax+b whereaandbare constants. The tangent to this curve at the
point where x=1is 2 x+y=6. Find the values ofaandb.
8 Consider the curve y=a
p
x+pb
x
whereaandbare constants. The normal to this curve at the point
where x=4is 4 x+y=22. Find the values ofaandb.
9 Show that the equation of the tangent toy=2x^2 ¡ 1 at the point wherex=a,is 4 ax¡y=2a^2 +1.
10 Find the equation of the tangent to:
a y=
p
2 x+1 at x=4 b y=
1
2 ¡x
at x=¡ 1
c f(x)=
x
1 ¡ 3 x
at (¡ 1 ,¡^14 ) d f(x)=
x^2
1 ¡x
at (2,¡4).
11 Find the equation of the normal to:
a y=
1
(x^2 +1)^2
at (1,^14 ) b y=
1
p
3 ¡ 2 x
at x=¡ 3
c f(x)=
p
x(1¡x)^2 at x=4 d f(x)=
x^2 ¡ 1
2 x+3
at x=¡ 1.
12 Consider the curvey=a
p
1 ¡bx whereaandbare constants. The tangent to this curve at the point
where x=¡ 1 is 3 x+y=5. Find the values ofaandb.
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_14\371CamAdd_14.cdr Wednesday, 8 January 2014 12:04:42 PM BRIAN