If the domain is restricted,
we need to check the value
of the function at the
endpoints of the domain.
Applications of differential calculus (Chapter 14) 379
Example 11 Self Tutor
Find the exact position and nature of the stationary point of y=(x¡2)e¡x.
dy
dx
= (1)e¡x+(x¡2)e¡x(¡1) fproduct ruleg
=e¡x(1¡(x¡2))
=
3 ¡x
ex
where ex is positive for allx
So,
dy
dx
=0when x=3.
The sign diagram of
dy
dx
is:
) at x=3we have a local maximum.
But when x=3, y= (1)e¡^3 =^1
e^3
) the local maximum is at (3,
1
e^3
).
6 Find the position and nature of the stationary point(s) of:
a y=xe¡x b y=x^2 ex c y=e
x
x
d y=e¡x(x+2)
7 Consider f(x)=xlnx.
a For what values ofxisf(x)defined? b Show that the global minimum value off(x)is¡
1
e
.
8 Find the greatest and least value of:
a x^3 ¡ 12 x¡ 2 for ¡ 36 x 65 b 4 ¡ 3 x^2 +x^3 for ¡ 26 x 63
9 The cubic polynomial P(x)=ax^3 +bx^2 +cx+d touches the line with equationy=9x+2at the
point (0,2), and has a stationary point at (¡ 1 ,¡7). Find P(x).
Example 12 Self Tutor
Find the greatest and least value of y=x^3 ¡ 6 x^2 +5on the interval ¡ 26 x 65.
Now dy
dx
=3x^2 ¡ 12 x
=3x(x¡4)
)
dy
dx
=0when x=0or 4
The sign diagram of
dy
dx
is:
) there is a local maximum at x=0,
and a local minimum at x=4.
The greatest of these values is 5 when
x=0.
The least of these values is¡ 27 when
x=¡ 2 and when x=4.
Critical value (x) f(x)
¡ 2 (endpoint) ¡ 27
0 (local max) 5
4 (local min) ¡ 27
5 (endpoint) ¡ 20
0
+ - +
4 x
dy
dx
+ -
3 x
dy
dx
To determine the nature
of a stationary point, we
can use a sign diagram or
the second derivative.
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_14\379CamAdd_14.cdr Monday, 7 April 2014 2:07:02 PM BRIAN