Integration (Chapter 15) 4153 The integralZ 3¡ 3e¡x
2
2
dx is of considerable interest to statisticians.a Use the graphing package to help sketch y=e
¡x2(^2) for ¡ 36 x 63.
b Calculate the upper and lower rectangular sums for the interval 06 x 63 using n= 2250.
c Use the symmetry of y=e
¡x
2
(^2) to find upper and lower rectangular sums for ¡ 36 x 60 for
n= 2250.
d Hence estimate
Z 3
¡ 3
e
¡x
2
(^2) dx.
How accurate is your estimate compared with
p
2 ¼?
Example 2 Self Tutor
Use graphical evidence and
known area facts to find:aZ 20(2x+1)dx bZ 10p
1 ¡x^2 dxaZ 20(2x+1)dx=shaded area
=¡1+5
2¢
£ 2
=6b If y=p
1 ¡x^2 then y^2 =1¡x^2 and so x^2 +y^2 =1which is the equation of the unit
circle. y=p
1 ¡x^2 is the upper half.
Z 10p
1 ¡x^2 dx=shaded area
=^14 (¼r^2 ) where r=1
=¼ 44 Use graphical evidence and known area facts to find:aZ 31(1 + 4x)dx bZ 2¡ 1(2¡x)dx cZ 2¡ 2p
4 ¡x^2 dxIn many problems in calculus we know the rate of change of one variable with respect to another, but we
do not have a formula which relates the variables. In other words, we know
dy
dx
, but we need to knowy
in terms ofx.B Antidifferentiation
AREA
FINDERxy
y=2x+125
3
1(2 5),O-1 11yxy = ~`1# -` #x 2O4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\415CamAdd_15.cdr Monday, 7 April 2014 3:57:53 PM BRIAN