Cambridge Additional Mathematics

(singke) #1
494 Answers

3 y=21andy=¡ 6 4 (^12 , 2

p
2)
5 k=¡ 5 6 y=¡ 3 x+1
7 a=¡ 4 , b=7 8 a=2,b=4
10 ax¡ 3 y=¡ 5 bx¡ 9 y=¡ 4
c x¡ 16 y=3 dy=¡ 4
11 ay=2x¡^74 by=¡ 27 x¡^2423
c 4 x+57y= 1042 dx¡ 2 y=¡ 1
12 a=4,b=3
13 ax+ey=2 bx+3y= 3 ln 3¡ 1
c 2 x+e^2 y=^2
e^2
¡e^2

15 ay=x by=x c 2 x¡y=¼ 3 ¡

p 3
2 dx=
¼
4
16 a(¡ 4 ,¡64) b (4,¡31)

17 a f^0 (x)=2x¡
8
x^3
b x=§

p
2 c tangent is y=4
18 Ais(^23 ,0),Bis(0,¡ 2 e)
19 ay=(2a¡1)x¡a^2 +9
by=5x, contact at(3,15),y=¡ 7 x, contact at(¡ 3 ,21)
20 y=0,y=27x+54 21 y=¡
p
14 x+4
p
14
22 y=eax+ea(1¡a) so y=ex is the tangent to y=ex
from the origin.
23 aHint: They must have the samey-coordinate atx=band
the same gradient.
c a=
1
2 e
d y=e
¡^12
x¡^12
24 ¼ 63 : 43 ±
25 aHint: y=f(a)+f^0 (a)(x¡a)
bHint: Expandf(x)=4¡8(x+1)¡(x+1)^2 +2(x+1)^3
c Notice the first 2 terms inbare the same as the tangent line
found in parta.

EXERCISE 14B
1aA - local max, B - stationary inflection, C - local min.
bi

ii

2a b

cd

ef

gh

ij

3 x=¡b
2 a
, local min if a> 0 , local max ifa< 0

4 a=9
5aa=¡ 12 ,b=¡ 13
b (¡ 2 ,3)local max., (2,¡29)local min.
6alocal maximum at(1,e¡^1 )
b local maximum at(¡ 2 , 4 e¡^2 ), local minimum at(0,0)
c local minimum at(1,e)
d local maximum at(¡ 1 ,e)
7ax> 0

10 a b

cd

-2 03 x

++-- f'(x)

-4 05








        • x








f(x)

2
x

f(x)¡

()no stationary points

O

(-2 -27),

(1 0),¡
x

f(x)

-3 -3

local min.

stationary
inflection

x O

f(x)¡

local min.

1

(¡¡¡Qr,-Qr)

O

(0 1),¡
x

f(x)¡
local max.
O

(-1 -9), (1 -9),

(0 -8),

2 x

f(x)¡

local min. local min.

local
max.

-2

O

(0 -2),

x

f(x)

-~`2 ~`2

local min.

O

(0 1),¡
x

f(x)¡

-1

stationary
inflection

O

(-1 4),¡

(1 0),¡

2

x

f(x)

local min.

local max.

-2 O

-~`2 ~`2

(-1 -1), (1 -1),

(0 0),¡
x

f(x)

local min. local min.

local
max.
O^1

x

y

y=sin 2 x

(0 0),
min.

¡ (0)¼,
min.

¡ (2¼,0)
min.

¡

(1)Es_p,
max.

(_ 1)_wp,
max.

O
¼ 2 ¼ x

1
O

y=esinx

y
max.(__wp,e)

()Es_p,
min.

Q.

1

-1

x

y

y=cos2x
¼¼ 22 ¼¼

(0 1),
max.

¡ (1)¼,
max.

¡ (2¼,1)
max.

¡

O
(_ -1)_wp,
min.

(Es_p,-1)
min.

¼ 2 ¼

1

-1

x

y
y=sinx
O

(Es_p,-1)
min.

(_ 1)_wp, max.

(2 1),¡

-7

x

f(x) stationary
inflection

O 1

1

8aGreatest value is 63 whenx=5,
least value is¡ 18 when x=2.
b Greatest value is 4 when x=3andx=0,
least value is¡ 16 when x=¡ 2.
9 P(x)=¡ 9 x^3 ¡ 9 x^2 +9x+2

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 IB HL OPT
Sets Relations Groups
Y:\HAESE\CAM4037\CamAdd_AN\494CamAdd_AN.cdr Tuesday, 8 April 2014 8:57:16 AM BRIAN

Free download pdf