Cambridge Additional Mathematics

(singke) #1
66 Quadratics (Chapter 3)

SOLVING BY FACTORISATION


Step 1: If necessary, rearrange the equation so one side is zero.
Step 2: Fully factorise the other side.
Step 3: Apply the rule: If ab=0then a=0or b=0.
Step 4: Solve the resulting linear equations.

Example 1 Self Tutor


Solve forx:
a 3 x^2 +5x=0 b x^2 =5x+6

a 3 x^2 +5x=0
) x(3x+5)=0
) x=0or 3 x+5=0
) x=0or x=¡^53

b x^2 =5x+6
) x^2 ¡ 5 x¡6=0
) (x¡6)(x+1)=0
) x=6or¡ 1

Example 2 Self Tutor


Solve forx:
a 4 x^2 +1=4x b 6 x^2 =11x+10

a 4 x^2 +1=4x
) 4 x^2 ¡ 4 x+1=0
) (2x¡1)^2 =0
) x=^12

b 6 x^2 =11x+10
) 6 x^2 ¡ 11 x¡10 = 0
) (2x¡5)(3x+2)=0
) x=^52 or ¡^23

Caution:
² Do not be tempted to divide both sides by an expression involvingx.
If you do this then you may lose one of the solutions.
For example, consider x^2 =5x.
Correct solution
x^2 =5x
) x^2 ¡ 5 x=0
) x(x¡5) = 0
) x=0or 5

Incorrect solution
x^2 =5x

)
x^2
x
=
5 x
x
) x=5

By dividing both sides
byx, we lose the solution
x=0.

² Be careful when taking square roots of both sides of an equation. You may otherwise lose solutions.
For example:
I Consider x^2 =25.
Correct solution
x^2 =25
) x=§

p
25
) x=§ 5

Incorrect solution
x^2 =25
) x=

p
25
) x=5

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_03\066CamAdd_03.cdr Thursday, 3 April 2014 4:15:46 PM BRIAN

Free download pdf