Cambridge Additional Mathematics

(singke) #1
Quadratics (Chapter 3) 71

For example, consider the Acme Leather Jacket Co. equation from page 65.

We need to solve: 12 : 5 x^2 ¡ 550 x+ 5125 = 0
so in this case a=12: 5 , b=¡ 550 , c= 5125

) x=
550 §

p
(¡550)^2 ¡4(12:5)(5125)
2(12:5)

=
550 §

p
46 250
25
¼ 30 : 60 or 13 : 40

However, for this application the number of jacketsxneeds to be a whole
number, so x=13or 31 would produce a profit of around $ 3000 each
week.

Example 7 Self Tutor


Solve forx:
a x^2 ¡ 2 x¡6=0 b 2 x^2 +3x¡6=0

b 2 x^2 +3x¡6=0has
a=2, b=3, c=¡ 6

) x=

¡ 3 §

p
32 ¡4(2)(¡6)
2(2)

) x=
¡ 3 §
p
9+48
4

) x=
¡ 3 §

p
57
4

EXERCISE 3A.3


1 Use the quadratic formula to solve exactly forx:
a x^2 ¡ 4 x¡3=0 b x^2 +6x+7=0 c x^2 +1=4x
d x^2 +4x=1 e x^2 ¡ 4 x+2=0 f 2 x^2 ¡ 2 x¡3=0
g 3 x^2 ¡ 5 x¡1=0 h ¡x^2 +4x+6=0 i ¡ 2 x^2 +7x¡2=0

2 Rearrange the following equations so they are written in the form ax^2 +bx+c=0, then use the
quadratic formula to solve exactly forx.
a (x+ 2)(x¡1) = 2¡ 3 x b (2x+1)^2 =3¡x c (x¡2)^2 =1+x
d (3x+1)^2 =¡ 2 x e (x+ 3)(2x+1)=9 f (2x+ 3)(2x¡3) =x

g
x¡ 1
2 ¡x
=2x+1 h x¡
1
x
=1 i 2 x¡
1
x
=3

Trying to factorise this
equation or using
‘completing the square’
would not be easy.

a x^2 ¡ 2 x¡6=0has
a=1, b=¡ 2 , c=¡ 6

) x=

¡(¡2)§

p
(¡2)^2 ¡4(1)(¡6)
2(1)

) x=
2 §
p
4+24
2

) x=
2 §

p
28
2

) x=
2 § 2

p
7
2
) x=1§

p
7

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_03\071CamAdd_03.cdr Friday, 17 January 2014 3:57:23 PM BRIAN

Free download pdf