Cambridge Additional Mathematics

(singke) #1
GRAPHING
PACKAGE

Quadratics (Chapter 3) 77

Discovery 2 Graphing y=a(x¡h)^2 +k


This Discovery is also best done using technology.
What to do:

1aUse technology to help you to sketch:
y=(x¡3)^2 +2, y=2(x¡3)^2 +2, y=¡2(x¡3)^2 +2,

b Find the coordinates of the vertex for each function ina.
c What is the geometrical significance ofain y=a(x¡3)^2 +2?

2aUse technology to help you to sketch:
y=2(x¡1)^2 +3, y=2(x¡2)^2 +4, y=2(x¡3)^2 +1,

b Find the coordinates of the vertex for each function ina.
c What is the geometrical significance ofhandkin y=2(x¡h)^2 +k?

3 Copy and complete:
If a quadratic has the form y=a(x¡h)^2 +k then its vertex has coordinates ......
The graph of y=a(x¡h)^2 +k is a ...... of the graph of y=ax^2 with vector ......

Quadratic form, a 6 =0 Graph Facts
² y=a(x¡p)(x¡q)
p,qare real

x-intercepts arepandq
axis of symmetry is x=
p+q
2
vertex is

³p+q
2

,f

³p+q
2

́ ́

² y=a(x¡h)^2
his real

touchesx-axis ath
axis of symmetry is x=h
vertex is(h,0)

² y=a(x¡h)^2 +k axis of symmetry is x=h
vertex is(h,k)

x=h

V,(h k)

x=h

V,(h 0) x

p q x

p+q
x = ^^^^
2____________

y=¡(x¡3)^2 +2, and y=¡^13 (x¡3)^2 +2

y=2(x+1)^2 +4, y=2(x+2)^2 ¡ 5 , and y=2(x+3)^2 ¡ 2

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_03\077CamAdd_03.cdr Thursday, 3 April 2014 4:25:13 PM BRIAN

Free download pdf