Quadratics (Chapter 3) 894 Find, in the form f(x)=ax^2 +bx+c, the equation of the quadratic whose graph:
a cuts thex-axis at 3 , passes through(5,12), and has axis of symmetry x=2
b cuts thex-axis at 5 , passes through(2,5), and has axis of symmetry x=1.Example 23 Self Tutor
Find the equation of each quadratic function given its graph:
aba Since the vertex is(3,¡2), the
quadratic has the form
y=a(x¡3)^2 ¡ 2 where a> 0.
When x=0, y=16
) 16 =a(¡3)^2 ¡ 2
) 16 = 9a¡ 2
) 18 = 9a
) a=2
The quadratic is y=2(x¡3)^2 ¡ 2.b Since the vertex is(¡ 4 ,2), the
quadratic has the form
y=a(x+4)^2 +2 where a< 0.
When x=¡ 2 , y=0
) 0=a(2)^2 +2
) 4 a=¡ 2
) a=¡^12
The quadratic is
y=¡^12 (x+4)^2 +2.5 If V is the vertex, find the equation of the quadratic function with graph:
abcde fyxV(- 42 , )-2 Oyx16V,(3 -2)OyxV() 24 ,O
V(-) 21 ,7
Oyx 1V() 38 ,Oyx7 xV(-) 46 ,OyxV() 23 ,
(3 1),
OyxV&*Qw,-EwO&*Ew,Qwy4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_03\089CamAdd_03.cdr Thursday, 3 April 2014 4:46:51 PM BRIAN