92 Quadratics (Chapter 3)
Example 25 Self Tutor
y=2x+k is a tangent to y=2x^2 ¡ 3 x+4. Findk.
y=2x+k meets y=2x^2 ¡ 3 x+4 where
2 x^2 ¡ 3 x+4=2x+k
) 2 x^2 ¡ 5 x+(4¡k)=0
Since the graphs touch, this quadratic has ¢=0
) (¡5)^2 ¡4(2)(4¡k)=0
) 25 ¡8(4¡k)=0
) 25 ¡32 + 8k=0
) 8 k=7
) k=^78
2 For which value ofcis the line y=3x+c a tangent to the parabola with equation
y=x^2 ¡ 5 x+7?
3 Find the values ofmfor which the lines y=mx¡ 2 are tangents to the curve with equation
y=x^2 ¡ 4 x+2.
4 Find the gradients of the lines withy-intercept 1 that are tangents to the curve f(x)=3x^2 +5x+4.
5aFor what values ofcdo the lines y=x+c never meet the parabola with equation
y=2x^2 ¡ 3 x¡ 7?
b Choose one of the values ofcfound in partaabove. Illustrate with a sketch that these graphs
never meet.
6 Consider the curve y=x^2 +4x¡ 1 and the line
y=2x+c. Find the value(s) ofcfor which the
line:
a meets the curve twice
b is a tangent to the curve
c does not meet the curve.
7 Consider the curve f(x)=¡x^2 +3x¡ 6 and
the line g(x)=mx¡ 2. Find the values ofm
for which the line:
a meets the curve twice
b is a tangent to the curve
c does not meet the curve.
y
O x
y=2x+c
y=x +4x-1 2
c
y
O x
y=mx-2
y=-x +3x-6 2
-2
A line which is a tangent to a
quadratic willtouchthe curve.
DEMO
DEMO
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_03\092CamAdd_03.cdr Monday, 20 January 2014 3:33:28 PM BRIAN