694 Chapter 8 An Introduction to Algebra
Identify the base and the exponent in each expression.
See Example 1.Write each expression in an equivalent form using an exponent.
See Example 2.- m m m m m
- r r r r r r
- a a b b b
- m m m n n
Use the product rule for exponents to simplify each expression.
Write the results using exponents.See Example 3.
- (c^5 )(c^8 ) 40. (d^4 )(d^20 )
- x^2 y x y^10 46. x^3 y x y^12
- m^100 m^100 48. n^600 n^600
cd^4 cd ab^3 ab^4(a^2 b^3 )(a^3 b^3 ) (u^3 v^5 )(u^4 v^5 )bb^2 b^3 aa^3 a^5a^3 a^3 m^7 m^753 54 34 36
5 uuu4 ttttt 5 u( 5 u)( 5 u)( 5 u)( 5 u)4 t 4 t 4 t 4 t(y9)^4 (z2)^39 m^12 3.14r^4 x^41
3
y^6( 3 x)^2 (2xy)^10a5
x
b3
x^543 (8)^2
GUIDED PRACTICE
SECTION 8.6 STUDY SET
Fill in the blank.- Expressions such as , and are called
expressions. - Match each expression with the proper description.
a. Product of exponential expressions with the same
base
b. Power of an exponential expression
c. Power of a productFill in the blanks.- a.
b. - a. b.
c. d. - To simplify each expression, determine whether you
add, subtract, multiply, or divide the exponents.
a.
b.
c. - To simplify , what factors within the
parentheses must be raised to the fourth
power?
Simplify each expression, if possible.- a. b.
- a. b.
- a. b.
- a. b.
Complete each solution to simplify each expression.
11.- (x^4 )^3 (x^2 )^3
x^12 x^6
x
xx(x^4 x^2 )^3 ( )^3NOTATION
42 24 x^3 y^2x^3 x^2 x^3 x^2x^2 x x^2 xx^2 x^2 x^2 x^2(2y^3 z^2 )^4(a^4 b^2 )^5(n^8 )^4b^6 b^9(xy)n (ab)cxx xmxn( 5 y)( 5 y)( 5 y)(3x)^4 CONCEPTS
(a^4 b^2 )^5 (a^8 )^4 a^5 a^3x^4 , 10^3 (5t)^2