Multiply.
- (3x^2 )(4x^3 ) 14. ( 2 a^3 )(3a^2 )
- (3b^2 )( 2 b) 16. (3y)(y^4 )
- ( 2 x^2 )(3x^3 ) 18. ( 7 x^3 )( 3 x^3 )
- 3(x4) 22. 3(a2)
- 4(t7) 24. 6(s^2 3)
- 3 x(x2) 26. 4 y(y5)
- 2 x^2 (3x^2 x) 28. 4 b^3 (2b^2 2 b)
- 2 x(3x^2 4 x7) 30. 3 y(2y^2 7 y8)
- p(2p^2 3 p2) 32. 2 t(t^2 t1)
- 3 q^2 (q^2 2 q7) 34. 4 v^3 ( 2 v^2 3 v1)
- (a4)(a5) 36. (y3)(y5)
- (3x2)(x4) 38. (t4)(2t3)
- (2a4)(3a5) 40. (2b1)(3b4)
Square each binomial.
- (2x3)^2 42. (2y5)^2
- (2x3)^2 44. (2y5)^2
- (5t1)^2 46. (6a3)^2
- (9b2) 48. (7m2)^2
Multiply.
- (2x1)(3x^2 2 x1)
- (x2)(2x^2 x3)
- (x1)(x^2 x1)
- (x2)(x^2 2 x4)
- (x2)(x^2 3 x1)
- (x3)(x^2 3 x2)
- (r^2 r3)(r^2 4 r5)
- (w^2 w9)(w^2 w3)
Multiply.
- 5 r 6
2 r 1
- 5 r 6
4 x 3
x 2
a
2
5
r^4 ba
3
5
a r^2 b
2
3
y^5 ba
3
4
y^2 b
PRACTICE 59. 60.
- GEOMETRY Find a polynomial that represents
the area of the rectangle (Hint:Recall that the
area of a rectangle is the product of its length
and width). - SAILING The height hof the triangular sail is
4 xfeet, and the base bis (3x2) feet. Find a
polynomial that represents the area of the sail.
(Hint:The area of a triangle is given by the formula
.) - STAMPS Find a polynomial that represents the area
of the stamp.
USA FIRST CLASS
(2x + 1) cm
(3x – 1) cm
(3x − 2) ft
4 x ft
A^12 bh
(x + 2) ft
(x − 2) ft
APPLICATIONS
5 r 2 r 6
2 r 1
4 x^2 3 x 4
3 x 2
4 x^2 2 x 1
2 x 1
x^2 x 1
x 1
6 r 5
2 r 3
4 x 2
3 x 5
A-20 Appendix II Polynomials