2.112. (a) dN= (2nno/a^3 /^2 ) e-UMT V U dU; (b) Up, =^1 /^2 kT.
2.113. In the latter case.
2.114. (a) II= 1 — ni--? = 0.25; (b) = 1 — ni /Y-1 = 0.18.
2.115. 8 = (1 — 11)/1 = 9.
2.116. -11 = 1 — 2T^3 /(T^1 + T^2 ).
2.117. n = — = 60%.
2.118. 1 1 = 1 — n-(1-1/^1 )•
2.119. 71 = 1 — (n + 7)41 + yn)
2.120. In both cases 11 =1
2.121. In both cases Ti =1 n
- 1
2.122. =1 : nn • 1 -"I
n - 1
2.123. (a) 11=1— 7 --‘, , (b) = 1^
ni — 1 y (n-1)^0 -1^
(n—i)
2.124. (a) 11= 1 n-1-1-(y — 1) n Inn '
(b) it =1
n-1+(y-1)Inn
y (n-1)
2.125. —
(T-1) In v
ti In v —1)/(y —1) '
2.126. rl =
(t— 1) In n
ti In n (T-1) y/(y —1) •
2.127. 11-1 2 7+1/T
(1-1-v) (1-1-1 77 )
2.128. The inequality .Q^1 — (^8) T2 Q; <0 becomes even stronger
when Ti is replaced by T,,,„„ and T^2 by Trnin Then Qiirmax
Q;amin< O. Hence
Qi—Q; Tnta:m—Turin a
<^ or 1<llcarnot• pdp^ (^61 41
2.129. According to the Carnot theorem (^) P
WW 1 = dTIT. Let us find the expressions
for 811 and 8Q 1. For an infinitesimal Carnot
cycle (e.g. parallelogram^1234 shown in
Fig. 14)
SA = dp-dV = (OpIOT)vdT • dV,
= p dV = [(away), + p] dV.^ Fig. 14.
It remains to substitute the two latter expressions into the former one.
2.130. (a) AS =
Ryln1.
19 JAK • mol); (b) AS — yR In y — 1 n =
= 25 J/(K • mol).
2.131. n = eAs/". = 2.0.
2.132. AS = vR ln n = 20 PK.
2.133. AS = M y-1 In n = —10 37K.
2.134. AS = In a — in 6) vR/(? — 1) = —11 J/K.
lkfc/V