xn+1
xn dx= — (n —1) n+1
dx = x
xS
sin x dx= — cos xcos x dx= sin xtan x dx= — in cos xS
cot x dx = In sin x.c
dx cos x — tan x
C dx — cot x
j sin' x
ex dx= ex
dx
J 1+0 =arctanx
arcsin xIn (x+ 17 Z^2 -
V x 2 -1
Integration by parts: u du = uv— v du9. Derivatives and Integrals
Function Derivative Function Derivative Function Derivative
xn
1
x
1
xn1 7x
ex
enx
ax
In xnxn-1
1
--x T
_ nsin x
cos xtan xcot xcos x
—sin x arcsin x
arccos xaretan x1
V 1— x 2
1
cos1
2 x
11 / 1— x 2
xn+i 1
1 sing x 1-{-x'
2 v x -. f
ex
nenx
ax Ina
—^1
xVuIn u_ u
vu'
arccot x
sinh x
cosh x
tank xcosh x2 Va +
u'
— a
vu'v'u1 x2
cosh x
sinh x
1
cosha x
1v 2sinh 2 xSome Definite Integrals11, (^) n=0
et e-x dx= tili ll ii-, n=1/2
o 1, n=1
2, n= 2
00 I 1 /2.1iTT, u=^0
5 x n tr* xa dx = i "2' -: n = 1
o^1 /^4 17 a., n=2
1/2, n=3
(^0) c ° zn dx
—
2.31, n=1/2
n 2 /6, n=1
2.405, n-= 2
n 4 /15, n= 3
24.9, n=4
r c& x 3 dx
0.225, a= 1
1.18, a= 2
2.56, cc= 3
4.91, a= 5
6.43, cc= 10j ex— 1
oex 1
o