148 PROBABILITY [CHAP. 7
7.39. LetXbe a random variable with meanμ=40 and standard deviationσ=2. Use Chebyshev’s Inequality
to find abfor whichP( 40 −b≤X≤ 40 +b)≥ 0 .95.
First solve 1− 1 /k^2 = 0 .95 forkas follows:
0. 05 =
1
k^2
or k^2 =
1
0. 05
=20 or k=
√
20 = 2
√
5
Then, by Chebyshev’s Inequality,b=kσ= 10
√
5 ≈ 23 .4. Hence[P( 16. 6 ≤X≤ 63. 60 )≥ 0. 95 ]
7.40. LetXbe a random variable with distributionf. TherthmomentMrofXis defined by
Mr=E(Xr)=
∑
xirf(xi)
Find the first four moments ofXifXhas the distribution:
x −21 3
f(x) 1/2 1/4 1/4
NoteM 1 is the mean ofX, andM 2 is used in computing the standard deviation ofX.
Use the formula forMrto obtain:
M 1 =
∑
xif(xi)=− 2
( 1
2
)
+ 1
( 1
4
)
+ 3
( 1
4
)
= 0
M 2 =
∑
x^2 if(xi)= 4
( 1
2
)
+ 1
( 1
4
)
+ 9
( 1
4
)
= 4. 5
M 3 =
∑
x^3 if(xi)=− 8
( 1
2
)
+ 1
( 1
4
)
+ 27
( 1
4
)
= 3
M 4 =
∑
x^4 if(xi)= 16
( 1
2
)
+ 1
( 1
4
)
+ 81
( 1
4
)
= 28. 5
7.41. Prove Theorem 7.10 (Chebyshev’s Inequality): Fork>0,
P(μ−kσ≤X≤μ+kσ)≥ 1 −k^12
By definition
σ^2 =Var(X)=
∑
(xi−μ)^2 pi
Delete all terms from the summation for whichxiis in the interval[μ−kσ, μ+kσ]; that is, delete all terms for which
|xi−μ|≤kσ. Denote the summation of the remaining terms by
∑∗
(xi−μ)^2 pi. Then
[
σ^2 ≥
∑∗
(xi−μ)^2 pi≥
∑∗
k^2 σ^2 pi=k^2 σ^2
∑∗
pi=k^2 σ^2 P(|X−μ|>kσ)
]
=k^2 σ^2 [ 1 −P(|X−μ|≤kσ)]=k^2 σ^2 [ 1 −P(μ−kσ≤X≤μ+kσ)]
Ifσ>0, then dividing byk^2 σ^2 gives
1
k^2 ≥^1 −P(μ−kσ≤X≤μ+kσ) or P(μ−kσ≤X≤μ+kσ)≥^1 −
1
k^2
which proves Chebyshev’s Inequality forσ>0. Ifσ=0, thenxi=μfor allpi>0, and
P(μ−k· 0 ≤X≤μ+k· 0 )=P(X=μ)= 1 > 1 −k^12
which completes the proof.