392 BOOLEAN ALGEBRA [CHAP. 15
15.8. Prove Theorem 15.5: The following are equivalent in a Boolean algebra:
( 1 )a+b=b; ( 2 )a∗b=a; ( 3 )a′+b= 1 ; ( 4 )a∗b′= 0.
By Theorem 14.4, ( 1 ) and ( 2 ) are equivalent. We show that ( 1 ) and ( 3 ) are equivalent. Suppose ( 1 ) holds. Then
a′+b=a′+(a+b)=(a′+a)+b= 1 +b= 1
Now suppose( 3 )holds. Then
a+b= 1 ∗(a+b)=(a′+b)∗(a+b)=(a′∗a)+b= 0 +b=b
Thus( 1 )and( 3 )are equivalent.
We next show that( 3 )and( 4 )are equivalent. Suppose( 3 )holds. By DeMorgan’s law and involution,
0 = 1 ′=(a′+b′)′=a′′∗b′=a∗b′
Conversely, if( 4 )holds then
1 = 0 ′=(a∗b′)′=a′+b′′=a′+b
Thus( 3 )and( 4 )are equivalent. Accordingly, all four are equivalent.
15.9. Prove Theorem 15.6: The mappingf:B→P (A)is an isomorphism whereBis a Boolean algebra,P (A)
is the power set of the setAof atoms, and
f(x)={a 1 ,a 2 ,...,an}
wherex=a 1 +···+anis the unique representation ofaas a sum of atoms.
Recall (Chapter 14) that if thea’s are atoms thena^2 i=aibutaiaj=0 forai=aj. Supposex,yare inBand
suppose
x=a 1 +···+ar+b 1 +···+bs
y=b 1 +···+bs+c 1 +···+ct
where
A={a 1 ,...,ar,b 1 ,...,bs,c 1 ,...,ct,d 1 ,...,dk}
is the set of atoms ofB. Then
x+y=a 1 +···+ar+b 1 +···+bs+c 1 +···+ct
xy=b 1 +···bs
Hence
f(x+y)={a 1 ,...,ar,b 1 ,...,bs,c 1 ,...,ct}
={a 1 ,...,ar,b 1 ,...,bs}∪{b 1 ,...,bs,c 1 ,...,ct}
=f(x)∪f(y)
f(xy)={b 1 ,...,bs}
={a 1 ,...,ar,b 1 ,...,bs}∩{b 1 ,...,bs,c 1 ,...,ct}
=f(x)∩f(y)
Let
y=c 1 +···+ct+d 1 +···+dk.Thenx+y=1 andxy= 0 ,and soy=x′
Thus
f(x′)={c 1 ,...,ct,d 1 ,...,dk}={a 1 ,...,ar,b 1 ,...,bs}c=(f (x))c
Since the representation is unique,fis one-to-one and onto. Hencefis a Boolean algebra isomorphism.