Schaum's Outline of Discrete Mathematics, Third Edition (Schaum's Outlines)

(Martin Jones) #1

APP. A] VECTORS AND MATRICES 413


(b)[ 6 ,− 1 , 8 , 3 ]





4
− 9
− 2
5




⎦=^24 +^9 −^16 +^15 =^32

We are now ready to define matrix multiplication in general.

Definition A.1: LetA=[aik]andB=[bkj]be matrices such that the number of columns ofAis equal to the
number of rows ofB, say,Ais anm×pmatrix andBis ap×nmatrix. Then the productABis them×nmatrix
C=[cij]whoseij-entry is obtained by multiplying theith row ofAby thejth column ofB, that is,


cij=ai 1 b 1 j+ai 2 b 2 j+···+aipbpj=

∑p

k= 1

aikbkj

The productABis pictured in Fig. A-2.
⎡ ⎢ ⎢ ⎢ ⎢ ⎣
a 11 ... a 1 p
· ... ·
ai 1 ... aip
· ... ·
am 1 ... amp

⎤ ⎥ ⎥ ⎥ ⎥ ⎦
⎡ ⎢ ⎢ ⎢ ⎢ ⎣
b 11 ... b 1 j ... b 1 n
· ... · ... ·
· ... · ... ·
· ... · ... ·
bp 1 ... bpj ... bpn

⎤ ⎥ ⎥ ⎥ ⎥ ⎦

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎣
c 11 ... c 1 n
· ... ·
· cij ·
· ... ·
cm 1 ... cmn

⎤ ⎥ ⎥ ⎥ ⎥ ⎦

Fig. A-2

We emphasize that the productABis not defined ifAis anm×pmatrix andBis aq×nmatrix wherep=q.

EXAMPLE A.6


(a) FindABwhereA=

[
13
2 − 1

]
andB=

[
20 − 4
5 − 26

]
.

SinceAis 2×2 andBis 2×3, the productABis defined andABisa2×3 matrix. To obtain the first
row of the product matrixAB, multiply the first row( 1 , 3 )ofAtimes each column ofB,
[
2
5

]
,

[
0
− 2

]
,

[
− 4
6

]

respectively. That is,

AB=

[
2 +15 0− 6 − 4 + 18

]
=

[
17 − 614

]

To obtain the second row of the productAB, multiply the second row( 2 ,− 1 )ofAtimes each column ofB,
respectively. Thus

AB=

[
17 − 614
4 − 50 + 2 − 8 − 6

]
=

[
17 − 614
− 12 − 14

]

(b) SupposeA=

[
12
34

]
andB=

[
56
0 − 2

]
.Then

AB=

[
5 + 06 − 4
15 + 018 − 8

]
=

[
52
15 10

]
and BA=

[
5 +18 10+ 24
0 − 60 − 8

]
=

[
23 34
− 6 − 8

]

The above Example A.6(b) shows that matrix multiplication is not commutative, that is, that the productsAB
andBAof matrices need not be equal.

Free download pdf