Schaum's Outline of Discrete Mathematics, Third Edition (Schaum's Outlines)

(Martin Jones) #1

424 VECTORS AND MATRICES [APP. A


A.7. Findx,y,z,t, where 3


[
xy
zt

]
=

[
x 6
− 12 t

]
+

[
4 x+y
z+t 3

]
.

First write each side as a single matrix:
[
3 x 3 y
3 z 3 t

]
=

[
x+ 4 x+y+ 6
z+t− 12 t+ 3

]

Set corresponding entries equal to each other to obtain the system of four equations.

3 x=x+ 4 , 3 y=x+y+ 6 , 3 z=z+t= 1 , 3 t= 2 t+ 3

or
2 x= 4 , 2 y= 6 +x, 2 z=t− 1 ,t= 3
The solution isx=2,y=4,z=1,t=3.

A.8. Prove Theorem A.1(v):k(A+B)=kA+kB.


LetA=[aij]andB=[bij]. Then theijentry ofA+Bisaij+bij. Hencek(aij+bij)is theijentry ofk(A+B).
On the other hand, theijentries ofkAandkBarekaijandkbij, respectively. Thuskaij+kbijis theijentry ofkA+kB.
However, for scalars,k(aij+bij)=kaij+kbij. Thusk(A+B)andkA+kBhave the sameijentries. Therefore,
k(A+B)=kA+kB.

MATRIX MULTIPLICATION AND TRANSPOSE


A.9. Calculate: (a)[ 3 ,− 2 , 5 ]



6
1
− 4


⎦; (b)[ 2 ,− 1 , 7 , 4 ]





5
− 3
− 6
9




⎦.

Multiply corresponding entries and then add:

(a)[ 3 ,− 2 , 5 ]



6
1
− 4


⎦= 18 − 2 − 20 =−4. (b)[ 2 ,− 1 , 7 , 4 ]



⎢⎣

5
− 3
− 6
9



⎥⎦= 10 + 3 − 42 + 36 = 7.

A.10. LetA=

[
13
2 − 1

]
andB=

[
20 − 4
3 − 26

]
.Find: (a)AB;(b)BA.

(a) SinceAis 2×2 andBis 2×3, the productABis defined and is a 2×3 matrix. To obtain the first row ofAB,
multiply the first row [1, 3] ofAby the columns

[
2
3

]
,

[
0
− 2

]
,

[
− 4
6

]
ofB, respectively:

[
13
2 − 1

][
2 0 − 4
3 − 26

]
=

[
1 ( 6 )+ 3 ( 3 ) 1 ( 0 )+ 3 (− 2 ) 1 (− 4 )+ 3 ( 6 )

]

=

[
2 + 90 − 6 − 4 + 18

]
=

[
11 − 614

]

To obtain the entries in the second row ofAB, multiply the second row[ 2 ,− 1 ]ofAby the columns ofB,
respectively:
[
13
2 − 1

][
2 0 − 4
3 − 26

]
=

[
11 − 614
4 − 30 + 2 − 8 − 6

]

Thus

AB=

[
11 − 614
12 − 14

]

(b) Note thatBis 2×3 andAis 2×2. Since the inner numbers, 3 and 2, are not equal, the productBAis not defined.
Free download pdf