426 VECTORS AND MATRICES [APP. A
(c) Computef (A)by first substitutingAforxand 5Ifor the constant term 5 inf(x)= 2 x^3 − 4 x+5:
f (A)= 2 A^3 − 4 A+ 5 I= 2
[
− 730
60 − 67
]
− 4
[
12
4 − 3
]
+ 5
[
10
01
]
Then multiply each matrix by its respective scalar:
f (A)=
[
− 14 60
120 − 134
]
+
[
− 4 − 8
−16 12
]
+
[
50
05
]
Lastly, add the corresponding elements in the matrices:
f (A)=
[
− 14 − 4 + 560 − 8 + 0
120 − 16 + 0 − 134 + 12 + 5
]
=
[
− 13 52
104 − 117
]
(d) Computeg(A)by first substitutingAforxand 11Ifor the constant term 11 ing(x)=x^2 + 2 x−11:
g(A)=A^2 + 2 A− 11 I=
[
9 − 4
− 817
]
+ 2
[
12
4 − 3
]
− 11
[
10
01
]
=
[
9 − 4
− 817
]
+
[
24
8 − 6
]
+
[
− 11 0
0 − 11
]
=
[
00
00
]
(Sinceg(A)=0, the matrixAis a zero of the polynomialg(x).)
A.15. Compute each determinant: (a)
∣
∣
∣
∣
45
− 3 − 2
∣
∣
∣
∣;(b)
∣
∣
∣
∣
a−bb
ba+b
∣
∣
∣
∣.
(a)
∣
∣∣
∣
45
− 3 − 2
∣
∣∣
∣=^4 (−^2 )−(−^3 )(^5 )=−^8 +^15 =^7.
(b)
∣∣
∣∣a−bb
ba+b
∣∣
∣∣=(a−b)(a+b)−b^2 =a^2 −b^2 −b^2 =a^2 − 2 b^2.
A.16. Find the determinant of each matrix:
(a) A=
⎡
⎣
123
4 − 23
05 − 1
⎤
⎦; (b) B=
⎡
⎣
4 − 1 − 2
02 − 3
521
⎤
⎦; (c) C=
⎡
⎣
2 − 34
12 − 3
− 1 − 25
⎤
⎦
(Hint: Use the diagram in Fig. A-3 (b)):
(a) |A|= 2 + 0 + 60 − 0 − 15 + 8 = 55
(b) |B|= 8 + 15 + 0 + 20 + 24 + 0 = 67
(c) |C|= 20 − 9 − 8 + 8 − 12 + 15 = 14
A.17. Find the inverse of: (a)A=
[
53
42
]
;(b)B=
[
− 26
3 − 9
]
.
Use the formula in Section A.9.
(a) First find|A|= 5 ( 2 )− 3 ( 4 )= 10 − 12 =− 2 .Next, interchange the diagonal elements, take the negatives of the
nondiagonal elements, and multiply by 1/|A|:
A−^1 =−
1
2
[
2 − 3
− 45
]
=
[
− (^132)
2 −^52
]
(b) First find|B|=− 2 (− 9 )− 6 ( 3 )= 18 − 18 = 0 .Since|B|= 0 ,Bhas no inverse.
A.18. Find the inverse of: (a)A=
⎡
⎣
1 − 22
2 − 36
117
⎤
⎦;(b)B=
⎡
⎣
13 − 4
15 − 1
313 − 6
⎤
⎦.