APP. A] VECTORS AND MATRICES 429
MISCELLANEOUS PROBLEMS
A.24. LetA=
⎡
⎣
100
001
110
⎤
⎦andB=
⎡
⎣
011
100
010
⎤
⎦be Boolean matrices.
Find the Boolean productsAB,BA, andA^2.
Find the usual matrix product and then substitute 1 for any nonzero scalar. Thus:
AB=
⎡
⎣
011
010
111
⎤
⎦; BA=
⎡
⎣
111
100
001
⎤
⎦; A^2 =
⎡
⎣
100
110
101
⎤
⎦
A.25. LetA=
[
13
4 − 3
]
.(a) Find a nonzero column vectoru=
[
x
y
]
such thatAu= 3 u.(b) Describe
all such vectors.
(a) First set up the matrix equationAu= 3 uand then write each side as a single matrix (column vector):
[
13
4 − 3
][
x
y
]
= 3
[
x
y
]
and
[
x+ 3 y
4 x− 3 y
]
=
[
3 x
3 y
]
Set corresponding elements equal to each other to obtain a system of equations, and reduce the system to echelon
form:
x+ 3 y= 3 x
4 x− 3 y= 3 y or
2 x− 3 y= 0
4 x− 6 y= 0 to
2 x− 3 y= 0
0 = 0
or 2x− 3 y= 0
The system reduces to one (nondegenerate) linear equation in two unknowns, and so it has an infinite number
of solutions. To obtain a nonzero solution, sety=2, say; thenx=3. Thusu=[ 3 , 2 ]Tis a desired nonzero
solution.
(b) To find the general solution, sety=a, whereais a parameter. Substitutey=ainto 2x− 3 y=0 to obtain
x= 3 a/2. Thusu=[ 3 a/ 2 ,a]Trepresents all such solutions.Alternatively, lety= 2 bsov=[ 3 b, 2 b]represents
all such solutions.
SupplementaryProblems
VECTORS
A.26. Letu=( 2 ,− 1 , 0 ,− 3 ), v=( 1 ,− 1 ,− 1 , 3 ), w = ( 1 , 3 ,− 2 , 2 ). Find: (a) 2u− 3 v; (b) 5u− 3 v− 4 w;
(c)−u+ 2 v− 2 w; (d)u·v, u·w, v·w, (e)‖u‖,‖v‖,‖w‖.
A.27. Let u=
⎡
⎣
1
3
− 4
⎤
⎦,v=
⎡
⎣
2
1
5
⎤
⎦,w=
⎡
⎣
3
− 2
6
⎤
⎦. Find: (a) 5 u − 3 v; (b) 2u + 4 v − 6 w;
(c) u·v, u·w, v·w; (d) ‖u‖,‖v‖,‖w‖.
A.28. Findxandywhere: (a)x( 2 , 5 )+y( 4 ,− 3 )=( 8 , 33 ); (b)x( 1 , 4 )+y( 2 ,− 5 )=( 7 , 2 ).
MATRIX OPERATIONS
A.29. LetA=
[
12
3 − 4
]
,B=
[
50
− 67
]
,C=
[
1 − 34
26 − 5
]
,D=
[
37 − 1
4 − 89
]
. Find:
(a) 5A− 2 Band 2C− 3 D; (c) ACandAD; (e) ATandCT;
(b) ABandBA; (d) BCandBD; (f) A^2 ,B^2 ,C^2.