Schaum's Outline of Discrete Mathematics, Third Edition (Schaum's Outlines)

(Martin Jones) #1

430 VECTORS AND MATRICES [APP. A


A.30. LetA=

[
1 − 12
034

]
,B=

[
40 − 3
− 1 − 23

]
,C=



2 − 301
5 − 1 − 42
− 1003


⎦,D=



2
− 1
3


⎦.

Find: (a) 3A− 4 B; (b)AB,AC,AD; (c)BC,BD,CD; (d)ATandATB.

A.31. LetA=

[
12
36

]
.Find a 2×3 matrixBwith distinct entries such thatAB=0.

SQUARE MATRICES


A.32. Find the diagonal and trace of: (a)A=



2 − 78
3 − 6 − 5
40 − 1


⎦; (b)B=



12 − 9
− 328
5 − 6 − 1


⎦.

A.33. LetA=

[
2 − 5
31

]
.Find: (a)A^2 andA^3 ; (b)f (A)wheref(x)=x^3 − 2 x^2 −5.

A.34. LetB=

[
4 − 2
1 − 6

]
.Find: (a)B^2 andB^3 ; (b)f(B)wheref(x)=x^2 + 2 x−22.

A.35. LetA=

[
6 − 4
3 − 2

]
.Find a nonzero vectoru=

[
x
y

]
such thatAu= 4 u.

DETERMINANTS AND INVERSES


A.36. Find each determinant: (a)

∣∣
∣∣^25
41

∣∣
∣∣;(b)

∣∣
∣∣^61
3 − 2

∣∣
∣∣;(c)

∣∣
∣∣−^28
− 5 − 2

∣∣
∣∣;(d)

∣∣
∣∣a−ba
aa+b

∣∣
∣∣.

A.37. Compute the determinant of each matrix in Problem A.32.

A.38. Find the inverse of: (a)A=

[
74
53

]
;(b)B=

[
5 − 2
6 − 3

]
;(c)C=

[
4 − 6
− 23

]
.

A.39. Find the inverse of each matrix (if it exists):

A=



12 − 4
− 1 − 15
27 − 3


⎦; B=



1 − 11
02 − 2
13 − 1


⎦; C=



123
25 − 1
512 1


⎦.

ECHELON MATRICES, ROW REDUCIONS, GAUSSIAN ELIMINATION


A.40. ReduceAto echelon form and then to row canonical form, where:

(a)A=



12 − 121
24 1− 23
36 2− 65


⎦; (b)A=



23 − 251
3 − 1204
4 − 56 − 57


⎦.

A.41. Using only 0’s and 1’s, list all 2×2 matrices in echelon form.
A.42. Using only 0’s and 1’s find the number of 3×3 matrices in row canonical form.
A.43. Solve each system:

(a)

x+ 2 y− 4 z=− 3
2 x+ 6 y− 5 z= 2
3 x+ 11 y− 4 z= 12

(b)

x+ 2 y− 4 z= 3
2 x+ 6 y− 5 z= 10
3 x+ 10 y− 6 z= 14

A.44. Solveeachsystem:

(a)

x− 3 y+ 2 z− t= 2
3 x− 9 y+ 7 z− t= 7
2 x− 6 y+ 7 z+ 4 t= 7

(b)

x+ 2 y+ 3 z= 7
x+ 3 y+ z= 6
2 x+ 6 y+ 5 z= 15
3 x+ 10 y+ 7 z= 23
Free download pdf