430 VECTORS AND MATRICES [APP. A
A.30. LetA=
[
1 − 12
034
]
,B=
[
40 − 3
− 1 − 23
]
,C=
⎡
⎣
2 − 301
5 − 1 − 42
− 1003
⎤
⎦,D=
⎡
⎣
2
− 1
3
⎤
⎦.
Find: (a) 3A− 4 B; (b)AB,AC,AD; (c)BC,BD,CD; (d)ATandATB.
A.31. LetA=
[
12
36
]
.Find a 2×3 matrixBwith distinct entries such thatAB=0.
SQUARE MATRICES
A.32. Find the diagonal and trace of: (a)A=
⎡
⎣
2 − 78
3 − 6 − 5
40 − 1
⎤
⎦; (b)B=
⎡
⎣
12 − 9
− 328
5 − 6 − 1
⎤
⎦.
A.33. LetA=
[
2 − 5
31
]
.Find: (a)A^2 andA^3 ; (b)f (A)wheref(x)=x^3 − 2 x^2 −5.
A.34. LetB=
[
4 − 2
1 − 6
]
.Find: (a)B^2 andB^3 ; (b)f(B)wheref(x)=x^2 + 2 x−22.
A.35. LetA=
[
6 − 4
3 − 2
]
.Find a nonzero vectoru=
[
x
y
]
such thatAu= 4 u.
DETERMINANTS AND INVERSES
A.36. Find each determinant: (a)
∣∣
∣∣^25
41
∣∣
∣∣;(b)
∣∣
∣∣^61
3 − 2
∣∣
∣∣;(c)
∣∣
∣∣−^28
− 5 − 2
∣∣
∣∣;(d)
∣∣
∣∣a−ba
aa+b
∣∣
∣∣.
A.37. Compute the determinant of each matrix in Problem A.32.
A.38. Find the inverse of: (a)A=
[
74
53
]
;(b)B=
[
5 − 2
6 − 3
]
;(c)C=
[
4 − 6
− 23
]
.
A.39. Find the inverse of each matrix (if it exists):
A=
⎡
⎣
12 − 4
− 1 − 15
27 − 3
⎤
⎦; B=
⎡
⎣
1 − 11
02 − 2
13 − 1
⎤
⎦; C=
⎡
⎣
123
25 − 1
512 1
⎤
⎦.
ECHELON MATRICES, ROW REDUCIONS, GAUSSIAN ELIMINATION
A.40. ReduceAto echelon form and then to row canonical form, where:
(a)A=
⎡
⎣
12 − 121
24 1− 23
36 2− 65
⎤
⎦; (b)A=
⎡
⎣
23 − 251
3 − 1204
4 − 56 − 57
⎤
⎦.
A.41. Using only 0’s and 1’s, list all 2×2 matrices in echelon form.
A.42. Using only 0’s and 1’s find the number of 3×3 matrices in row canonical form.
A.43. Solve each system:
(a)
x+ 2 y− 4 z=− 3
2 x+ 6 y− 5 z= 2
3 x+ 11 y− 4 z= 12
(b)
x+ 2 y− 4 z= 3
2 x+ 6 y− 5 z= 10
3 x+ 10 y− 6 z= 14
A.44. Solveeachsystem:
(a)
x− 3 y+ 2 z− t= 2
3 x− 9 y+ 7 z− t= 7
2 x− 6 y+ 7 z+ 4 t= 7
(b)
x+ 2 y+ 3 z= 7
x+ 3 y+ z= 6
2 x+ 6 y+ 5 z= 15
3 x+ 10 y+ 7 z= 23