454 ALGEBRAIC SYSTEMS [APP. B
B.9.Letσandτbe the following elements of the symmetric groupS 6 :
σ=
(
123456
315462
)
and τ=
(
123456
531624
)
Find:τσ,στ,σ^2 , andσ−^1. (Sinceσandτare functions,τσmeans applyσand thenτ.)
Figure B-7 shows the effect on 1, 2, ..., 6 of the composition of the permutations:
(a) σand thenτ;(b)τand thenσ;(c)σand thenσ, i.e.σ^2.
Thus:
τσ=
(
123456
152643
)
,στ=
(
123456
653214
)
,σ^2 =
(
123456
536421
)
We obtainσ−^1 by interchanging the top and bottom rows ofσand then rearranging:
σ−^1 =
(
315462
123456
)
=
(
123456
261435
)
Fig. B-7
B.10. LetHandKbe groups.
(a) Define the direct productG=H×KofHandK.
(b) What is the identity element and the order ofG=H×K?
(c) Describe and find the multiplication table of the groupG=Z 2 ×Z 2.
(a) LetG=H×K, the Cartesian product ofHandK, with the operation∗defined componentwise by
(h, k)∗h′,k′=(hh′,kk′)
ThenGis a group (Problem B.68), called thedirect productofHandK.
(b) The elemente=(eH,eK)is the identity element ofG, and|G|=|H|·|K|.
(c) SinceZ 2 has two elements,Ghas four elements. Let
e=( 0 , 0 ), a=( 1 , 0 ), b=( 0 , 1 ), c=( 1 , 1 )
The multiplication table ofGappears in Fig. B-8(a). Note thatGis abelian since the table is symmetric. Also,
a^2 =e,b^2 =e,c^2 =e. ThusGis not cyclic, and henceG∼=Z 4.
B.11. LetSbe the square in the planeR^2 pictured in Fig. B-8(b), with its center at the origin 0. Note that the
vertices ofSare numbered counterclockwise from 1 to 4.
(a) Define the groupGof symmetries ofS.
(b) List the elements ofG.
(c) Find a minimum set of generators ofG.