- 1 INTRODUCTION PREFACE xiii
- 1.1 Organization of Text
- 1.2 Probability Tables and Computer Software
- 1.3 Prerequisites
- PART A: PROBABILITY AND RANDOM VARIABLES
- 2 BASIC PROBABILITY CONCEPTS
- 2.1 Elements of Set Theory
- 2.1.1 Set Operations
- 2.2 Sample Space and Probability M easure
- 2.2.1 Axioms of Probability
- 2.2.2 Assignment of Probability
- 2.3 Statistical Independence
- 2.4 Conditional Probability
- Reference
- Further Reading
- Problems
- DISTRIBUTIONS 3 RANDOM VARIABLES AND PROBABILITY
- 3.1 Random Variables
- 3.2 Probability D istributions
- 3.2.1 Probability D istribution F unction
- Variables 3.2.2 Probability M ass F unction for D iscrete R andom
- Variables 3.2.3 Probability D ensity F unction for Continuous Random
- 3.2.4 M ixed-Type D istribution
- 3.2.1 Probability D istribution F unction
- 3.3 Two or More Random Variables
- 3.3.1 Joint Probability D istribution F unction
- 3.3.2 Joint Probability M ass F unction
- 3.3.3 Joint Probability D ensity F unction
- 3.4 Conditional Distribution and Independence
- Further Reading and Comments
- Problems
- 2.1 Elements of Set Theory
- 4 EXPECTATIONS AND MOMENTS
- 4.1 Moments of a Single Random Variable
- 4.1.1 Mean, Median, and Mode
- 4.1.2 Central Moments, Variance, and Standard Deviation
- 4.1.3 Conditional Expectation
- 4.2 Chebyshev Inequality
- 4.3 Moments of Two or More Random Variables
- 4.3.1 Covariance and Correlation Coefficient
- 4.3.2 Schwarz Inequality
- 4.3.3 The Case of Three or More Random Variables
- 4.4 Moments of Sums of Random Variables
- 4.5 Characteristic Functions
- 4.5.1 G eneration of M oments
- 4.5.2 Inversion Formulae
- 4.5.3 Joint Characteristic Functions
- Further Reading and Comments
- Problems
- 4.1 Moments of a Single Random Variable
- 5 FUNCTIONS OF RANDOM VARIABLES
- 5.1 Functions of One Random Variable
- 5.1.1 Probability D istribution
- 5.1.2 M oments
- 5.2 Functions of Two or More Random Variables
- 5.2.1 Sums of Random Variables
- 5.3 m Functions of n Random Variables
- Reference
- Problems
- 5.1 Functions of One Random Variable
- 6 SOME IMPORTANT DISCRETE DISTRIBUTIONS
- 6.1 Bernoulli Trials
- 6.1.1 Binomial D istribution
- 6.1.2 G eometric D istribution
- 6.1.3 N egative Binomial D istribution
- 6.2 M ultinomial D istribution
- 6.3 Poisson D istribution
- 6.3.1 Spatial Distributions
- 6.3.2 The Poisson Approximation to the Binomial Distribution
- 6.4 Summary
- Further Reading
- Problems
- 6.1 Bernoulli Trials
- 7 SOME IMPORTANT CONTINUOUS DISTRIBUTIONS
- 7.1 Uniform Distribution
- 7.1.1 Bivariate Uniform Distribution
- 7.2 Gaussian or Normal Distribution
- 7.2.1 The Central Limit Theorem
- 7.2.2 Probability Tabulations
- 7.2.3 Multivariate Normal Distribution
- 7.2.4 Sums of Normal Random Variables
- 7.3 Lognormal Distribution
- 7.3.1 Probability Tabulations
- 7.4 Gamma and Related Distributions
- 7.4.1 Exponential Distribution
- 7.4.2 Chi-Squared Distribution
- 7.5 Beta and R elated D istributions
- 7.5.1 Probability Tabulations
- 7.5.2 G eneralized Beta D istribution
- 7.6 Extreme-Value Distributions
- 7.6.1 Type-I Asymptotic Distributions of Extreme Values
- 7.6.2 Type-II Asymptotic Distributions of Extreme Values
- 7.6.3 Type-III Asymptotic Distributions of Extreme Values
- 7.7 Summary
- R eferences
- Further Reading and Comments
- Problems
- 7.1 Uniform Distribution
- ESTIMATION, AND MODEL VERIFICATION PART B: STATISTICAL INFERENCE, PARAMETER
- 8 OBSERVED DATA AND GRAPHICAL REPRESENTATION
- 8.1 Histogram and Frequency Diagrams
- R eferences
- Problems
- 9 PARAMETER ESTIMATION
- 9.1 Samples and Statistics
- 9.1.1 Sample M ean
- 9.1.2 Sample Variance
- 9.1.3 Sample M oments
- 9.1.4 Order Statistics
- 9.2 Quality Criteria for Estimates
- 9.2.1 U nbiasedness
- 9.2.2 M inimum Variance
- 9.2.3 Consistency
- 9.2.4 Sufficiency
- 9.3 M ethods of Estimation
- 9.3.1 Point Estimation
- 9.3.2 Interval Estimation
- References
- Further Reading and Comments
- Problems
- 9.1 Samples and Statistics
- 10 MODEL VERIFICATION
- 10.1 Preliminaries
- 10.1.1 Type-I and Type-II Errors
- 10.2 Chi-Squared Goodness-of-Fit Test
- 10.2.1 The Case of K nown Parameters
- 10.2.2 The Case of Estimated Parameters
- 10.3 Kolmogorov–Smirnov Test
- References
- Further Reading and Comments
- Problems
- 10.1 Preliminaries
- 11 LINEAR MODELS AND LINEAR REGRESSION
- 11.1 Simple Linear R egression
- 11.1.1 Least Squares M ethod of Estimation
- 11.1.2 Properties of Least-Square Estimators
- 11.1.3 U nbiased Estimator for
- 11.1.4 Confidence Intervals for R egression Coefficients
- 11.1.5 Significance Tests
- 11.2 M ultiple Linear R egression
- 11.2.1 Least Squares M ethod of Estimation
- 11.3 Other R egression M odels
- Reference
- Further Reading
- Problems
- 11.1 Simple Linear R egression
- APPENDIX A: TABLES
- A.1 Binomial Mass Function
- A.2 Poisson Mass Function
- A.3 Standardized Normal Distribution Function
- A.4 Student’s t Distribution with n Degrees of Freedom
- A.5 Chi-Squared Distribution with n Degrees of Freedom
- A.6 D 2 Distribution with Sample Size n
- R eferences
- APPENDIX B: COMPUTER SOFTWARE
- APPENDIX C: ANSWERS TO SELECTED PROBLEMS
- Chapter
- Chapter
- Chapter
- Chapter
- Chapter
- Chapter
- Chapter
- Chapter
- Chapter
- Chapter
- SUBJECT INDEX
john hannent
(John Hannent)
#1