Substituting fX 1 X 2 (x 1 ,x 2 ) into Equation (5.44) enables us to determine FY (y)
and, on differentiating with respect to y, gives fY (y).
For the special case where X 1 and X 2 are independent, we have
and Equation (5.44) simplifies to
x 1 x 2 =y
x 1
x 2
R^2
Figure 5. 16 Region R^2 , in Example 5.11
Functions of Random Variables 139
FY
y
Z 1
0
Zy=x 2
1
fX 1 X 2
x 1 ;x 2 dx 1 dx 2
Z 0
1
Z 1
y=x 2
fX 1 X 2
x 1 ;x 2 dx 1 dx 2 :
5 : 44
fX 1 X 2 x 1 ,x 2 )fX 1 x 1 )fX 2 x 2
FY
y
Z 1
0
FX 1
y
x 2
fX 2
x 2 dx 2
Z 0
1
1
FX 1
y
x 2
fX 2
x 2 dx 2 ;
fY
y
dFY
y
dy
Z 1
1
fX 1
y
x 2
fX 2
x 2
1
x 2
dx^2 :
^5 :^45
and