Substituting fX 1 X 2 (x 1 ,x 2 ) into Equation (5.44) enables us to determine FY (y)
and, on differentiating with respect to y, gives fY (y).
For the special case where X 1 and X 2 are independent, we have
and Equation (5.44) simplifies to
x 1 x 2 =yx 1x 2R^2Figure 5. 16 Region R^2 , in Example 5.11Functions of Random Variables 139
FY
yZ 1
0Zy=x 2
1fX 1 X 2 
x 1 ;x 2 dx 1 dx 2 Z 0
1Z 1
y=x 2fX 1 X 2 
x 1 ;x 2 dx 1 dx 2 : 
 5 : 44 fX 1 X 2 x 1 ,x 2 )fX 1 x 1 )fX 2 x 2
FY
yZ 1
0FX 1
y
x 2fX 2 
x 2 dx 2 Z 0
11
FX 1
y
x 2fX 2 
x 2 dx 2 ;fY
ydFY
y
dy
Z 1
1fX 1y
x 2fX 2 
x 2 1
x 2
dx^2 : 
^5 :^45 and
