Substituting Equations (6.34), (6.37), and (6.40) into Equation (6.41) and
letting we obtain
which yields
Continuing in this way we find, for the general term,
Equation (6. 44 ) gives the pmf of X(0,t), the number of arrivals during
time interval [ 0 ,t) subject to the assumptions stated above. It is called the
Poisson distribution, with parameters and t. However, since and t appear in
Equation (6. 44 ) as a product, t, it can be replaced by a single parameter ,
andsowecanalsowrite
Themeanof isgivenby
Similarly,wecanshowthat
ItisseenfromEquation( 6. 46 )thatparameter isequaltotheaverage
numberofarrivalsperunitintervaloftime;thename‘meanrateofarrival’for
,asmentionedearlier,isthusjustified.Indeterminingthevalueofthis
parameterinagivenproblem,itcanbeestimatedfromobservationsby
176 FundamentalsofProbabilityandStatisticsforEngineers
t! 0
dp 1
0 ;t
dt
p 1
0 ;tet; p 1
0 ; 0 0 ;
6 : 42
p 1
0 ;ttet:
6 : 43
pk
0 ;t
tket
k!
; k 0 ; 1 ; 2 ;...:
6 : 44
t,
pk
0 ;t
ke
k!
; k 0 ; 1 ; 2 ;...:
6 : 45
X(0,t)
EfX
0 ;tg
X^1
k 0
kpk
0 ;tet
X^1
k 0
k
tk
k!
tet
X^1
k 1
tk^1
k 1 !
tetett:
6 : 46
^2 X
0 ;tt:
6 : 47
m/n,