Fundamentals of Probability and Statistics for Engineers

(John Hannent) #1

Substituting Equations (6.34), (6.37), and (6.40) into Equation (6.41) and
letting we obtain


which yields


Continuing in this way we find, for the general term,


Equation (6. 44 ) gives the pmf of X(0,t), the number of arrivals during
time interval [ 0 ,t) subject to the assumptions stated above. It is called the
Poisson distribution, with parameters and t. However, since and t appear in
Equation (6. 44 ) as a product, t, it can be replaced by a single parameter ,
andsowecanalsowrite


Themeanof isgivenby

Similarly,wecanshowthat


ItisseenfromEquation( 6. 46 )thatparameter isequaltotheaverage
numberofarrivalsperunitintervaloftime;thename‘meanrateofarrival’for
,asmentionedearlier,isthusjustified.Indeterminingthevalueofthis
parameterinagivenproblem,itcanbeestimatedfromobservationsby


176 FundamentalsofProbabilityandStatisticsforEngineers


t! 0

dp 1 … 0 ;t†
dt

ˆp 1 … 0 ;t†‡et; p 1 … 0 ; 0 †ˆ 0 ; … 6 : 42 †

p 1 … 0 ;t†ˆtet: … 6 : 43 †

pk… 0 ;t†ˆ

…t†ket
k!

; kˆ 0 ; 1 ; 2 ;...: … 6 : 44 †

 

 

ˆt,


pk… 0 ;t†ˆ
ke
k!

; kˆ 0 ; 1 ; 2 ;...: … 6 : 45 †

X(0,t)

EfX… 0 ;t†gˆ

X^1

kˆ 0

kpk… 0 ;t†ˆet

X^1

kˆ 0

k…t†k
k!

ˆtet

X^1

kˆ 1

…t†k^1
…k 1 †!
ˆtetetˆt:

… 6 : 46 †

^2 X… 0 ;t†ˆt: … 6 : 47 †





m/n,
Free download pdf