Theorem 9. 2: the Crame ́r– R a o ineq ua lit y.LetX 1 ,X 2 ,...,Xn denote a sample
of size n from a population X with pdf f(x; ), where is the unknown param-
eter, and let h(X 1 ,X 2 ,...,Xn) be an unbiased estimator for. Then, the
variance of satisfies the inequalityif the indicated expectation and differentiation exist. An analogous result with
p(X; ) rep lacing f(X; ) is obtained when X is discrete.
ProofofTheorem9.2:the joint probability density function (j pdf) of X 1 ,X 2 ,...,
and Xn is, because of their mutual independence, The
mean of statistic isand, since is unbiased, it givesAnother relation we need is the identity:Upon differentiating both sides of each of Equations (9.27) and (9.28) with
respect to , we haveParameter Estimation 267^
^
varf^g nE
qlnf
X;
q) 2 1
; 9 : 26
fx 1 ;)fx 2 ;)fxn;).
^,^ hX 1 ,X 2 ,...,Xn),Ef^gEfh
X 1 ;X 2 ;...;Xng;^
Z 1
1Z 1
1h
x 1 ;...;xnf
x 1 ;f
xn;dx 1 dxn:
9 : 27 1
Z 1
1f
xi;dxi; i 1 ; 2 ;...;n:
9 : 28 1
Z 11Z 11h
x 1 ;...;xnXnj 11
f
xj;qf
xj;
q"#
f
x 1 ;f
xn;dx 1 dxnZ 11Z 11h
x 1 ;...;xnXn
j 1qlnf
xj;
q"#
f
x 1 ;f
xn;dx 1 dxn;
9 : 30 0 Z 11qf
xi;
q
dxiZ 11qlnf
xi;
qf
xi;dxi; i 1 ; 2 ;...;n:
9 : 30