Theorem 9. 2: the Crame ́r– R a o ineq ua lit y.LetX 1 ,X 2 ,...,Xn denote a sample
of size n from a population X with pdf f(x; ), where is the unknown param-
eter, and let h(X 1 ,X 2 ,...,Xn) be an unbiased estimator for. Then, the
variance of satisfies the inequality
if the indicated expectation and differentiation exist. An analogous result with
p(X; ) rep lacing f(X; ) is obtained when X is discrete.
ProofofTheorem9.2:the joint probability density function (j pdf) of X 1 ,X 2 ,...,
and Xn is, because of their mutual independence, The
mean of statistic is
and, since is unbiased, it gives
Another relation we need is the identity:
Upon differentiating both sides of each of Equations (9.27) and (9.28) with
respect to , we have
Parameter Estimation 267
^
^
varf^g nE
qlnf
X;
q
) 2 1
; 9 : 26
fx 1 ;)fx 2 ;)fxn;).
^,^ hX 1 ,X 2 ,...,Xn),
Ef^gEfh
X 1 ;X 2 ;...;Xng;
^
Z 1
1
Z 1
1
h
x 1 ;...;xnf
x 1 ;f
xn;dx 1 dxn:
9 : 27
1
Z 1
1
f
xi;dxi; i 1 ; 2 ;...;n:
9 : 28
1
Z 1
1
Z 1
1
h
x 1 ;...;xn
Xn
j 1
1
f
xj;
qf
xj;
q
"#
f
x 1 ;f
xn;dx 1 dxn
Z 1
1
Z 1
1
h
x 1 ;...;xn
Xn
j 1
qlnf
xj;
q
"#
f
x 1 ;f
xn;dx 1 dxn;
9 : 30
0
Z 1
1
qf
xi;
q
dxi
Z 1
1
qlnf
xi;
q
f
xi;dxi; i 1 ; 2 ;...;n:
9 : 30