The foregoing results can be extended to the multiple parameter case. Let
be the parameter vector. Then Y 1 h 1 (X 1 ,...,Xn),...,
m, is a set of sufficient statistics for if and only if
where hT A similar expression holds when X is discrete.
Example 9.7.Let us show that statisticX is a sufficient statistic for in
Example 9.5. In this case,
We see that the joint probability mass function (jpmf) is a function of and
.Ifwelet
the jpmf of X 1 ,...,and Xn takes the form given by Equation (9.50), with
and
In this example,
is thus a sufficient statistic for. We have seen in Example 9.5 that both 1 and
2 , where 1 X, and 2 are based on this sufficient
statistic. Furthermore, 1 , being unbiased, is a sufficient estimator for.
Ex ample 9. 8. Suppose X 1 ,X 2 ,...,andXn are a sample taken from a Poisson
distribution; that is,
276 Fundamentals of Probability and Statistics for Engineers
qT[ 1 ...m],mn,
YrhrX 1 ,...,Xn),r q
Yn
j 1
fX
xj;qg 1 h
x 1 ;...;xn;qg 2
x 1 ;...;xn;
9 : 51
[h 1 hr].
Yn
j 1
pX
xj;
Yn
j 1
xj
1 ^1 xj
xj
1 nxj:
9 : 52
xj
Y
Xn
j 1
Xj;
g 1 xj
1 nxj;
g 2 1 :
Xn
j 1
Xj
^
^ ^ ^ nX1)/n2),
^
pX
k;
ke
k!
; k 0 ; 1 ; 2 ;...;
9 : 53