These theoretical probabilities are given in the third column of Table 10.5.
From column 5 of Table 10.5, we obtain
Table A.5 with 0:05 and k r 1 9 degrees of freedom gives
Since d the hypothesized distribution with 9 09 is accepted at
the 5% significance level.
Example 10.4.Problem: based upon the snowfall data given in Problem 8.2(g)
from 1909 to 1979, test the hypothesis that the Buffalo yearly snowfall can be
modeled by a normal distribution at 5% significance level.
Answer: for this problem, the assumed distribution for X, the Buffalo yearly
snowfall, measured in inches, is N(m,^2 ) where m and^2 must be estimated
from the data. Since the maximum likelihood estimator for m and^2 are
respectively, we have
Table 10.5 Table for^2 test for Example 10.3
0 x < 5 9 0.052 5.51 14.70
5 x < 6 7 0.058 6.15 7.97
6 x < 7 13 0.088 9.33 18.11
7 x < 8 12 0.115 12.19 11.81
8 x < 9 8 0.131 13.89 4.61
9 x < 10 9 0.132 13.99 5.79
10 x < 11 13 0.120 12.72 13.29
11 x < 12 10 0.099 10.49 9.53
12 x < 13 5 0.075 7.95 3.14
13 x < 14 6 0.054 5.72 6.29
14 x 14 0.076 8.06 24.32
106 1.0 106 119.56
M odel Verification 325
d
Xk
i 1
n^2 i
npi
n 119 : 56 106 13 : 56 :
^29 ; 0 : 05 16 : 92 :
<^2 9,0: 05 ,
M^X, andc^2 [-n1)/n]S^2 ,
m^x
1
70
X^70
j 1
xj 83 : 6 ;
b^2 ^69
70
s^2
1
70
X^70
j 1
xj 83 : 6 ^2 777 : 4 :
Interval,Ai ni pi npi n^2 i/npi