Fourier and Laplace 361
R.4.113 To gain additional experience, fi ve examples of DEs are presented and solved
manually, using the LT technique.
The following examples are solved for y(t) for each of the given DEs.
a. Example (#1)
Given the DE240 020
dy t
dtyt y()
() with IC (initial condition) ( )ANALYTICAL SolutionTaking the LT of the given equation results in22040[()sY s Y s ] ()sY s() 20 4 Ys() Ys()
2 2thensY s()^2200 Y s() Ys s()(^2200 )
thenYs
s()^20 (^2)
taking the ILT
yt e ut
() 20 ^2 t ()
b. Example (#2)
Let the initial value of DE be
dyt
dt
yt
2
2 4
()
()
with the IC given byy
dy t
dt t()
()
00 and 0 8ANALYTICAL SolutionApplying the LT to the preceding equationsYs sy
dy t
dtYs
t2
0() ( ) 04
()
()
sYs s Ys(^2) ()( ) 084 ()