PRACTICAL MATLAB® FOR ENGINEERS PRACTICAL MATLAB

(sharon) #1

Fourier and Laplace 421


Then from Table 4.2

vt() etsin( t ut) ()
120
7

⋅⋅ 7

and therefore,

it
vt
R

etut

it Cdv t
dt

d
dt

e

R t

C
t

()
()
sin( ) ( )

() ()





6
7

7

1
40

120
7






⋅ ssin( ) ( )

() cos( ) ( )

7

3
7

77 7
3
7

tut

itC etttt te e











sin  777 7

3

3
6
7

cos()sin() ( )

() () ()

()

tt

it it it

it e

LRC

L t










ut



 sin( 7 ) ( ) 7cos(7) sin(7) ( )
3
7

tute−t ttut

MATLAB Solution
% Script file: RLC _ parallel
t =-2:0.1:5;
t0 =0;
u = stepfun(t,t0);
vt =120/sqrt(7).*exp(-t).*sin(sqrt(7).*t).*u ;

figure(1)
subplot(2,2,1);
plot(t,vt);title(‘ v(t) vs.t (analytical)’);
ylabel(‘Amplitude (volts)’)
ir = 6/sqrt(7)*e x p(-t).*sin(sqrt(7).*t).*u;
subplot(2,2,2);
plot(t,ir);title(‘ ir(t) vs.t (analytical)’);
ylabel(‘ Amplitude (amps)’)
ic=3/sqrt(7).*exp(-t).*(sqrt(7).*cos(sqrt(7).*t)- sin(sqrt(7).*t)).*u;
subplot(2,2,3);
plot(t,ic);title(‘ ic(t) vs.t (analytical)’);
ylabel(‘Amplitude (amps)’);xlabel(‘time(sec)’);
subplot(2,2,4);
il = 3*ones(1,71)-ir-ic ;
plot(t,il);title(‘il(t) vs.t (analytical)’);
ylabel(‘Amplitude (amps)’) ;xlabel(‘time (sec)’);

figure(2)
subplot(2,2,1)
num = [0 0 120];
den = [1 2 8];
vti = impulse(num,den,t);vti=[zeros(1,20) vti’];
plot(t,vti);title(‘ v(t) vs. t (sym. Laplace)’);
Free download pdf