PRACTICAL MATLAB® FOR ENGINEERS PRACTICAL MATLAB

(sharon) #1

Fourier and Laplace 453


c. cos(3w)
d. 2/(jw + 2)
e. 3/(jw + 2)^2
f. −1/w^2
P.4.25 Using the MATLAB symbolic toolbox, repeat P.4.24.
P.4.26 Obtain the following ILTs using Table 4.2, and indicate the Laplace properties used
in the process:
a. (s + 3)/(s^2 + 4 s + 5)
b. δ(s)
c. cos(3s)
d. (2s^2 + 4 s + 4)/(s^2 + 3 s + 2)
e. s + 3/(s + 2)^2
f. −1/s^2
P. 4. 2 7 Ve r i f y t h a t f(t) and F(s) given as follows constitute a LT pair

ft e t te Fs
s

e
ss

tt
s
() sin( ) ()
()

  

















3443


3


216


2


3


223
3
23



 ↔

P.4.28 Find the partial fraction expansion of each of the following functions:
a. 2s/(s^2 + 5s + 4)
b. (2s^2 + 1)/(s^2 + 5s + 4)
c. 2s/(s^2 + 6s + 8)
d. 2s/(s^2 + 1s + 1)
e. s^2 /(s^2 + 5s + 4)
f. s/(s^2 + 3s + 4)
P.4.29 Verify the following LT pairs:

a. ft t t Fs s e
s

s
()cos( ) sin( ) () ()


532432 512


9


2
 2



b. ft t Fs
ss s

() sin () ()
()( )( )




 


5
22222

120


13 5



c. ft t Fs
ss s s

() sin () ()
()()()







6
222222

720


246



d. ft
t
t

Fs

s
s

()


sin ( )
() ln

(^22)  2
2


1


4


2











P.4.30 Verify that the current i(t) shown in the circuit diagram of Figure 4.95 is given by

it I s
ss

() = £−^1 {}()= 2


50


 (^25)
assuming that all the initial conditions are zero.

Free download pdf