10 Table of contents
26 SEQUENCES 533
27 CIRCLE GEOMETRY 547
28 EXPONENTIAL FUNCTIONS AND
EQUATIONS 565
29 FURTHER TRIGONOMETRY 579
30 VARIATION AND
POWER MODELLING 605
31 LOGARITHMS 625
A Number sequences 534
B Algebraic rules for sequences 535
C Geometric sequences 537
D The difference method for sequences 539
Review set 26A 544
Review set 26B 545
A Circle theorems 547
B Cyclic quadrilaterals 556
Review set 27A 561
Review set 27B 562
A Rational exponents 566
B Exponential functions 568
C Exponential equations 570
D Problem solving with
exponential functions 573
E Exponential modelling 576
Review set 28A 577
Review set 28B 578
A The unit circle 579
B Area of a triangle u g e 583
C The e rule 585
D The e rule 588
E Problem solving with the e
and e rules 591
F Trigonometry with compound shapes 593
G Trigonometric graphs 595
H Graphs of and 599
Review set 29A 601
Review set 29B 602
A Direct variation 606
B Inverse variation 612
C Variation modelling 615
D Power modelling 619
Review set 30A 622
Review set 30B 623
A Logarithms in base 625
B The arithmic function 627
sin sin
sin
cosin
sin
cosin
sin = cos
log
ya bx ya bx
a
¡¡= ¡¡¡¡() ()
C Rules for arithms 629
D Logarithms in base 630
E Exponential and arithmic equations 634
Review set 31A 636
Review set 31B 637
A Solving one variable inequalities with
techno y 639
B Linear inequality regions 641
C Integer points in regions 644
D Problem solving (Extension) 645
Review set 32A 647
Review set 32B 648
A Investigation questions 661
B Modelling questions 669
log
10
log
log
32 INEQUALITIES 639
33 MULTI-TOPIC QUESTIONS 649
34 INVESTIGATION AND MODELLING
QUESTIONS 661
ANSWERS 673
INDEX 752
IGCSE
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_00\010IGCSE01_00.CDR Friday, 21 November 2008 12:30:32 PM PETER