Cambridge International Mathematics

(Tina Sui) #1
66 Sets (Chapter 2)

In the Venn diagram alongside,

A=f 2 , 3 , 4 , 7 g and B=f 1 , 3 , 7 , 8 , 10 g.

We can see that A\B=f 3 , 7 g
and A[B=f 1 , 2 , 3 , 4 , 7 , 8 , 10 g.

DISJOINT SETS


Two setsAandBaredisjointif they have no elements in common, or in other words if A\B=?.
IfAandBhave elements in common then they arenon-disjoint.

Example 8 Self Tutor


If U=fpostive integers 612 g, A=fprimes 612 g and B=ffactors of 12 g:
a List the elements of the setsAandB.
b Show the setsA,BandUon a Venn diagram.
c List the elements in: i A^0 ii A\B iii A[B
d Find: i n(A\B) ii n(A[B) iii n(B^0 )

a A=f 2 , 3 , 5 , 7 , 11 g and B=f 1 , 2 , 3 , 4 , 6 , 12 g
b

ciA^0 =f 1 , 4 , 6 , 8 , 9 , 10 , 12 g ii A\B=f 2 , 3 g
iii A[B=f 1 , 2 , 3 , 4 , 5 , 6 , 7 , 11 , 12 g
din(A\B)=2 ii n(A[B)=9
iii B^0 =f 5 , 7 , 8 , 9 , 10 , 11 g,son(B^0 )=6

EXERCISE 2E.1


1aList:
i setC ii setD iii setU
iv setC\D v setC[D
b Find:
i n(C) ii n(D) iii n(U)
iv n(C\D) v n(C[D)

U

AB

9 6
5

2
4

3
7

1

8
10

U

CD

4 6
8

3
7

1

2

9 5

U

AB

(^109)
8
5
7
(^112)
3
1
6
12
4
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_02\066IGCSE01_02.CDR Thursday, 11 September 2008 11:10:02 AM PETER

Free download pdf