Cambridge International Mathematics

(Tina Sui) #1
Sets (Chapter 2) 67

2aList:
i setA ii setB iii setU
iv setA\B v setA[B
b Find:
i n(A) ii n(B) iii n(U)
iv n(A\B) v n(A[B)

3 Consider U=fxjx 612 ,x 2 Z+g,
A=f 2 , 7 , 9 , 10 , 11 g and B=f 1 , 2 , 9 , 11 , 12 g.
a Show these sets on a Venn diagram.
b List the elements of: i A\B ii A[B iii B^0
c Find: i n(A) ii n(B^0 ) iii n(A\B) iv n(A[B)

4 IfAis the set of all factors of 36 andBis the set of all factors of 63 , find:
a A\B b A[B
5 If X=fA, B, D, M, N, P, R, T, Zg and Y=fB, C, M, T, W, Zg, find:
a X\Y b X[Y
6 Suppose U=fxjx 630 ,x 2 Z+g,
A=ffactors of 30 g and B=fprime numbers 630 g.
a Find: i n(A) ii n(B) iii n(A\B) iv n(A[B)
b Useato verify that n(A[B)=n(A)+n(B)¡n(A\B)

7aUse the Venn diagram given to show that:
n(A[B)=n(A)+n(B)¡n(A\B).
b SupposeAandBare disjoint events.
Explain why n(A[B)=n(A)+n(B):

8 Simplify:
a X\Y for X=f 1 , 3 , 5 , 7 g and Y=f 2 , 4 , 6 , 8 g
b A[A^0 for any set A 2 U.
c A\A^0 for any set A 2 U.

USING VENN DIAGRAMS TO ILLUSTRATE REGIONS


We can use a Venn diagram to help illustrate regions such as the union or intersection of sets.
Shaded regions of a Venn diagram can be used to verifyset identities. These are equations involving sets
which are true forallsets.
Examples of set identities include:

A[A^0 =UA\A^0 =?
(A[B)^0 =A^0 \B^0 (A\B)^0 =A^0 [B^0

U

A

B^8

5 3

1

6
4

2
7

()

()=+

a
a

nA a b:

means that
there are elements
in this region, so

¡

¡¡¡¡

¡

U

AB
()a
()b
()c

()d

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_02\067IGCSE01_02.CDR Thursday, 11 September 2008 11:13:44 AM PETER

Free download pdf