Algebra (Equations and inequalities) (Chapter 3) 89
EXERCISE 3F
1 Represent the following inequalities on a number line:
a x> 5 b x> 1 c x 62 d x<¡ 1
e ¡ 26 x 62 f ¡ 3 <x 64 g 16 x< 6 h ¡ 1 <x< 0
i x< 0 or x> 3 j x 6 ¡ 1 or x> 2 k x< 2 or x> 5 l x 6 ¡ 2 or x> 0
2 Write down the inequality used to describe the set of numbers:
abc
de f
gh i
jk l
Notice that 5 > 3 and 3 < 5 ,
and that ¡ 3 < 2 and 2 >¡ 3 :
This suggests that if weinterchangethe LHS and RHS of an inequation, then we mustreversethe inequality
sign. >is the reverse of<, >is the reverse of 6 , and so on.
You may also remember from previous years that:
² If weaddorsubtractthe same number to both sides, the inequality sign ismaintained.
For example, if 5 > 3 then 5 +2> 3 +2.
² If wemultiplyordivideboth sides by apositivenumber, the inequality sign ismaintained.
For example, if 5 > 3 then 5 £ 2 > 3 £ 2 :
² If wemultiplyordivideboth sides by anegativenumber, the inequality sign isreversed.
For example, if 5 > 3 then 5 £¡ 1 < 3 £¡ 1 :
The method of solution of linear inequalities is thus identical to that of linear equations with the exceptions
that:
² interchangingthe sidesreversesthe inequality sign
² multiplyingordividingboth sides by anegativenumberreversesthe inequality sign.
G SOLVING LINEAR INEQUALITIES [2.2]
x
0
5
x
-5
4
x
-1
20
x
7
10
x
3
x
-2
x
100
x
0.2
7
x
2
0
x
-3 17
x
4 33
x
21
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_03\089IGCSE01_03.CDR Wednesday, 17 September 2008 9:26:58 AM PETER