126 Exponents and surds (Chapter 6)
Example 4 Self Tutor
Find, using your calculator: a 65 b (¡5)^4 c ¡ 74
Answer
a Press: 6 ^ 5 ENTER 7776
b Press: ( (¡) 5 ) ^ 4 ENTER 625
c Press: (¡) 7 ^ 4 ENTER ¡ 2401
EXERCISE 6A.2
1 Simplify:
a (¡1)^4 b (¡1)^5 c (¡1)^10 d (¡1)^15 e (¡1)^8 f ¡ 18
g ¡(¡1)^8 h (¡3)^3 i ¡ 33 j ¡(¡3)^3 k ¡(¡6)^2 l ¡(¡4)^3
2 Simplify:
a 23 £ 32 £(¡1)^5 b (¡1)^4 £ 33 £ 22 c (¡2)^3 £(¡3)^4
3 Use your calculator to find the value of the following, recording the entire display:
a 28 b (¡5)^4 c ¡ 35 d 74 e 83 f (¡7)^6
g ¡ 76 h 1 : 0512 i ¡ 0 : 62311 j (¡ 2 :11)^17
Notice that: ² 23 £ 24 =2£ 2 £ 2 £ 2 £ 2 £ 2 £2=2^7
²
25
22
=
2 £ 2 £ 2 £ 2 £ 2
2 £ 2
=2^3
² (2^3 )^2 =2£ 2 £ 2 £ 2 £ 2 £2=2^6
² (3£5)^2 =3£ 5 £ 3 £5=3£ 3 £ 5 £5=3^252
²
μ
2
5
¶ 3
=
2
5
£
2
5
£
2
5
=
2 £ 2 £ 2
5 £ 5 £ 5
=
23
53
These examples can be generalised to the exponent or index laws:
² am£an=am+n Tomultiplynumbers with thesame base, keep the base
andaddthe indices.
²
am
an
=am¡n, a 6 =0 Todividenumbers with thesame base, keep the base
andsubtractthe indices.
² (am)n=am£n Whenraisingapowerto apower, keep the base and
multiplythe indices.
² (ab)n=anbn The power of a product is the product of the powers.
²
³a
b
́n
=
an
bn
, b 6 =0 The power of a quotient is the quotient of the powers.
B EXPONENT OR INDEX LAWS [1.9, 2.4]
1
1
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\126IGCSE01_06.CDR Thursday, 18 September 2008 12:14:38 PM PETER